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Humans monitor states of uncertainty that can guide decision-making. These uncertain

states are evident behaviorally when humans decline to make a categorization response.

Such behavioral uncertainty responses (URs) have also defined the search for metacogni-

tion in animals. While a plethora of neuroimaging studies have focused on uncertainty, the

brain systems supporting a volitional strategy shift under uncertainty have not been

distinguished from those observed in making introspective post-hoc reports of categori-

zation uncertainty. Using rapid event-related fMRI, we demonstrate that the neural activity

patterns elicited by humans' URs are qualitatively different from those recruited by asso-

ciative processes during categorization. Participants performed a one-dimensional

perceptual-categorization task in which an uncertainty-response option let them decline

to make a categorization response. Uncertainty responding activated a distributed network

including prefrontal cortex (PFC), anterior and posterior cingulate cortex (ACC, PCC),

anterior insula, and posterior parietal areas; importantly, these regions were distinct from

those whose activity was modulated by task difficulty. Generally, our results can be

characterized as a large-scale cognitive control network including recently evolved brain

regions such as the anterior dorsolateral and medial PFC. A metacognitive theory would

view the UR as a deliberate behavioral adjustment rather than just a learned middle

category response, and predicts this pattern of results. These neuroimaging results bolster

previous behavioral findings, which suggested that different cognitive processes underlie

responses due to associative learning versus the declaration of uncertainty. We conclude

that the UR represents an elemental behavioral index of metacognition.
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1. Introduction

When the cost of an error is high and the correct response is

uncertain, an adaptive choice is to pass rather than guess.

Such conscious control of behavior in response to the sub-

jective feeling of uncertainty is a hallmark of metacognition

(e.g., Dunlosky& Bjork, 2008; Flavell, 1979; Koriat&Goldsmith,

1994; Metcalfe & Shimamura, 1994; Nelson, 1992; Schwartz,

1994), and is a crucial cognitive capacity that affects every

aspect of adaptive human behavior.

Much behavioral research has studied the adaptive nature

of the uncertainty response (UR)dsometimes called an “opt-

out” responsedin which the primary task response may be

declined to avoid a (presumably low-confidence) decision. The

UR is a simultaneous perceptual and confidence judgment,

leveraging uncertainty to modify behavior during a primary

perceptual task. In the present study, we adopted a simple

perceptual categorization paradigm wherein participants

made sparse versus dense categorization judgments about the

number of illuminated pixels in a circle. Critically, partici-

pants were also allowed to opt out of any trial (i.e., avoid

forced, low-confidence categorization judgments) by using the

UR.

There are two clear advantages afforded by this paradigm

choice. First, it offers the ability to directly compare percep-

tual categorization responses with a volitional, adaptive opt-

out response. Although the brain structures and functions

underlying any confidence judgment need not necessarily

differ, this paradigm allows us to assess particular brain

structures related to a confidence judgment that is implicit,

prospective, and adaptive with respect to the primary task

goal (i.e., maximizing performance by avoiding errors). Previ-

ous research has attributed activity in posterior parietal cor-

tex, dorsal anterior cingulate cortex (dACC), and both anterior

and dorsolateral prefrontal cortex (PFC) to explicit, post-

decisional, retrospective (not behaviorally adaptive) confi-

dence judgments (Fleming, Huijgen, & Dolan, 2012;

Hilgenstock, Weiss, & Witte, 2014; Rounis, Maniscalco,

Rothwell, Passingham, & Lau, 2010; Yokoyama et al., 2010).

Thus, the present research is positioned to complement those

findings.

Second, this paradigm addresses an actively debated con-

troversy regarding the putative metacognitive nature of the

UR. The field of comparative psychology has used UR para-

digms in order to infer higher-level cognitive capacity in ani-

mals through behavioral comparisons to humans. Humans

actively report that URs are prompted by conscious control

over uncertainty; unfortunately, comparative psychology is at

a disadvantage because animals cannot report such feelings.

Proponents of a metacognitive theory of uncertainty moni-

toring have demonstrated remarkable behavioral iso-

morphisms between humans and animals in UR-based

paradigms (Kornell, Son, & Terrace, 2007; Smith, 2009; Smith,

Beran, & Couchman, 2012), which supports the view that an-

imals possess putativemetacognitive abilities. For example, in

an effort to dissociate reinforcement signals with individual

stimuli, Smith, Beran, Redford, andWashburn (2006) observed
that monkeys continue to adaptively and strategically use the

UR when feedback is deferred to the end of multi-trial blocks

of stimuli. Using an information-seeking metacognitive

paradigm, Basile, Schroeder, Brown, Templer, and Hampton

(2015) tested and subsequently discounted seven alternative

explanations for monkeys' performance, and instead argued

that their empirical evidence is wholly consistent with a

metacognitive account of the animals' performance.

Opposing the view that non-human primates possess

metacognitive capacity, some argue that the UR is simply a

first-order “middle-category response”, assigned to stimuli

near the category bound (Carruthers, 2008; Jozefowiez,

Staddon, & Cerutti, 2009). In the sparse versus dense catego-

rization task used in the present investigation, this “middle-

region” essentially divides the category space into three

regionsdsparse, medium-dense, and densedseparated by

two category bounds. In such a scenario, stimuli are associ-

ated with the “middle-region” response through the same

reinforcement and conditioning mechanisms that guide

learning and performance for the sparse and dense stimulus

regions. More recent arguments for the low-level, associative

nature of the UR seek to account for the apparent meta-

cognitive behavior of animals through reinforcement learning

models. These models capture the idea that animals are

simply conditioned to respond uncertain to the most difficult

stimulidi.e., those most likely to produce errors (Le Pelley,

2012, 2014). At its core, this theory is argued as being a more

parsimonious account of animals' behavior, eschewing the

attribution of UR use to metacognition in animals. This

alternative to the metacognitive UR explanation necessarily

predicts that the same brain structures supporting associa-

tive, reinforcement learning processes also underlie the UR.

Note that despite the fact that humans appeal to feelings of

uncertainty in using the UR, the associative reinforcement

account of the UR is readily applicable to humans as an

explanatory mechanism for their observed behavior.

There is empirical evidence for and against each account,

and the theoretical debate is active (Smith, Couchman, &

Beran, 2014a, 2014b). However, neuroscience evidence

seeking to disentangle the UR from competing associative

accounts is sparse, and two of those few extant studies found

conflicting results. Komura, Nikkuni, Hirashima, Uetake, and

Miyamoto (2013) found support for dissociable UR brain re-

gions (by selectively affecting UR with muscimol injections),

but this result was contested by Kiani and Shalden (2009), who

showed that the same neurons in parietal cortex both accu-

mulate evidence in service of a categorization response and

trigger a UR when uncertainty is high. Behaviorally, humans

and macaques both use the UR in similar ways (Smith et al.,

2006; Smith, Coutinho, Church, & Beran, 2013; Zakrzewski,

Coutinho, Boomer, Church, & Smith, 2014), suggesting

similar underlying function and homologous brain structures.

Partly for this reason, we hypothesize that recently evolved

networksdand not reinforcement learning or associative

learning networksdunderlie the UR.

In addition to speaking to this debate, our design offers the

ability to elucidate the component processes involved in using

the UR. According to the metacognitive theory, the UR is a
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complex behavioral adjustment that involves both avoiding

errors (uncertainty monitoring) and declining the primary

task (task-set switching). Uncertainty monitoring recruits re-

gions that include medial PFC/dorsolateral PFC (DLPFC), pos-

terior parietal cortex, ACC and posterior cingulate cortex

(PCC), and anterior insula (AI) (Bach, Hulme, Penny, & Dolan,

2011; Carter et al., 1998; Fleck, Daselaar, Dobbins, & Cabeza,

2006; Grinband, Hirsch, & Ferrera, 2006; Huettel, Song, &

McCarthy, 2005; Kable & Glimcher, 2007; MacDonald, Cohen,

Stenger, & Carter, 2000; McCoy & Platt, 2005; Platt & Huettel,

2008; Ridderinkhof, Ullsperger, Crone, & Nieuwenhuis, 2004;

Stern, Gonzalez, Welsh, & Taylor, 2010; Ullsperger, Harsay,

Wessel, & Ridderinkhof, 2010; Volz, Schubotz, & von

Cramon, 2004). A role in selecting from conflicting action

plans has been attributed to dorsal medial frontal cortex

(Taylor, Nobre, & Rushworth, 2007) and DLPFC (Cohen et al.,

1997; Fleck et al., 2006; MacDonald et al., 2000; Ridderinkhof

et al., 2004), so these areas may be involved in choosing the

UR. Observing activation during URs in these areas, as well as

areas that have been previously associated with retrospective

categorization uncertainty judgments, would therefore be in

line with the predictions of the metacognitive account.

The structure of results within our task can also serve to

disentangle competing accounts of the UR. Choosing the UR is

most adaptive near the sparseedense category bound where

categorization difficulty is highest and the probability of a

correct response is lowest. However, the UR is necessarily a

subjective judgment made when an individual stimulus is

deemed too difficult to categorize (e.g., due to perceptual

noise), and can occur for stimuli far from the bound as well.

The metacognitive account predicts that the neural profile of

URs far from the bound will be functionally identical to those

made close to the bound because the brain structures driving

the decision to decline categorization should be the same

regardless of the source of the increased categorization diffi-

culty (e.g., noise from eye-fatigue versus low categorization

confidence). That is, conditioned on a UR having occurred, a

fixed set of brain regions (distinct from those involved in

categorization) is expected to be activated, regardless of dif-

ficulty. Although there may nonetheless be gradations diffi-

culty effects, due to gradations in these extra-categorizational

brain regions, or mixing effects from multiple processes

operating within a single trial, the form of any such effects

should be distinct from pure categorization trials. The alter-

native “middle-category” associative learning account would

make a different prediction, because all responses would

essentially be categorization responses. Any response in the

middle of the “medium-dense” category region (i.e., near the

sparseedense category bound) corresponds to the highest

middle-category certainty, making the choice of a “medium-

dense” response easier than near the edges of the “medium-

dense” region. Therefore, according to the middle-category

account, during a “medium-dense-category response” (UR)

brain activation intensity should vary with distance-to-bound

to exactly the same extent as “regular” categorization trials.

Our investigation is thus positioned to address a theoretical

controversy, and at the same time contribute to the cognitive

neuroscience literature ofmetacognition and decisionmaking

by uncovering the neural correlates of a strategic and adaptive

response to uncertainty.
2. Method

2.1. Participants

Thirty-two undergraduates from the University of California,

Santa Barbara community were recruited for the imaging

experiment after completing a prescreening laboratory

experiment as described below. Three participants were un-

able to complete the entire imaging experiment leaving 29 (14

female and 15 male) participants. All participants had normal

or corrected-to-normal vision, and reported no previous

neurological injuries or disorders. Participants received course

credit for the laboratory session and monetary compensation

for their participation in the fMRI session. Prior to data

collection, the experiment was reviewed and approved by the

UCSB Institutional Review Board.

2.2. Stimuli

The stimuli were circular pixel patterns adapted from Smith

et al. (2006). Each stimulus was a black disc subtending

about 5� of visual angle presented on a black background with

a pre-determined proportion of random pixels illuminated

white. Fig. 1 shows four sample stimuli. There were 41

possible stimulus levels and each level had 1.8 percent more

pixels illuminated than the previous. The proportion of illu-

minated pixels in the disc was calculated using the formula:

proportion ¼ .10 � 1.018 level (rounded down to the nearest

integer). The proportion of pixels illuminated white in the disc

stimuli ranged from .1018 (Level 1) to .2078 (Level 41).

Stimulus Levels 1e20 were defined as “sparse” and

deserved the Sparse response. Stimulus Levels 22e41 were

defined as “dense” and deserved the Dense response. Stim-

ulus Level 21 was never shown to participants and served as

the separating boundary between the lower 20 Sparse levels

and the upper 20 Dense levels. Nonetheless, the Sparse and

Dense trial levels nearest Level 21 (the SparseeDense

discrimination breakpoint of the task) were most difficult to

discriminate as Sparse or Dense for participants, and these

trials levels were expected to receive the most Uncertain re-

sponses. The number of stimuli sampled from any particular

level was calculated using a mirrored, truncated geometric

distribution: G(p ¼ .15, k ¼ 20). A histogram of the distribution

of stimuli appears in Fig. 2; 498 stimuli were sampled across all

41 observed stimulus levels.

2.3. Apparatus

The experiment was controlled using customMATLAB scripts

and functions from Brainard (1997) Psychophysics Toolbox.

During laboratory sessions, participants made Sparse and

Dense responses with one hand on keyboard keys specially

labeled “S” and “D”. They made Uncertain responses with the

opposite hand on a key specially labeled “?”. Specifically,

participants in the laboratory session were assigned to make

Uncertain responses either with the left hand or with the right

hand, and Sparse/Dense responses with the other hand. Par-

ticipants selected for the scanning session maintained the

same left/right hand-to-button assignment in the scanner.

http://dx.doi.org/10.1016/j.cortex.2015.07.028
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the densest. Levels 20 and 22 are adjacent to the category boundary (Level 21) that separates sparse from dense.
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During scanning sessions, participants emitted responses

using the Lumina Response Pad System (model LU400-Pair).

For 14 participants (7 female), the right-hand button box was

used to make Sparse and Dense responses and the left-hand

button box was used to make Uncertain responses; the but-

ton assignments were reversed (i.e., right-hand to make Un-

certain responses) for the remaining 15 participants (7

female). Note that because there are two buttons per response

pad and three total response options, we chose to segregate

the Uncertain response from the categorization responses by

lateralizing the former to one hand or the other, which also

reduces working memory demands associated with main-

taining the motor response set. This lateralization is coun-

terbalanced in the present sample. Stimuli and feedback were

presented on an LCD monitor during laboratory sessions and

on a digital projector and screen viewed through a head-coil-

mounted mirror during scanning sessions.
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Fig. 2 e Histogram of stimuli at each density level. Stimuli

from Level 21 were never shown and served as the

category boundary separating sparse stimuli (Levels 1e20)

from dense stimuli (Levels 22e41).
2.4. Procedure

During the laboratory prescreening session, participants were

instructed that they would see black stimuli on a black back-

ground with varying numbers of white illuminated pixels.

Their job was to categorize each stimulus as Sparse or Dense

depending on howmany pixels were illuminated. Participants

were also informed they could choose to decline a response by

using the Uncertain response. In order to motivate the use of

this response, participants received þ1 point for correct re-

sponses, �5 points for incorrect responses, and 0 points for

uncertain responses. They were told that their goal was to

maximize the accumulated score.

Prior to the experimental trials, participants completed 20

practice trials to become familiar with the procedure. During

the practice trials, only stimuli from levels 1 and 41 were

shown to participants. On each trial, a crosshair appeared for

500 msec immediately before a single stimulus presentation.

The stimulus appeared centered on the screen and was

response terminated. Feedback was presented immediately

for 1500 msec as the total accumulated score along with “þ1”

in green text for correct responses, “�5” in red for incorrect

responses, and “Don't know: þ0” in white for URs. If the

response time exceeded 2000 msec, “Too slow: �5” was pre-

sented in red. This feedback procedure was repeated on every

trial. Points accumulated during the practice session were

reset for the experimental session. There were 498 experi-

mental trials and the experiment lasted approximately

60 min.

Participants who initially completed the laboratory version

of the Sparse-Uncertain-Dense task were screened for their

frequency of URs in order to determine their eligibility for

brain imaging during this task. Although we expect the

cognitive processes to be common across subjects regardless

of their use of the UR, power considerations in the fMRI setting

demand aminimumnumber of events of each type of interest

(including, in this case, the UR). The participants in the labo-

ratory session who used the UR on at least 30% of the most

difficult trials (i.e., within three stimulus bins of the category

boundary) were invited back for the fMRI experiment. Out of

156 participants, 70 met this criterion. The average accuracy

and uncertainty-response profiles for the 70 participants who

met the criterion and the 86 participants who did not are

shown in Fig. 3. Although there is a clear difference in the

http://dx.doi.org/10.1016/j.cortex.2015.07.028
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frequency of use, the general pattern of uncertainty

responding across these two groups is similar and both groups

closely match the qualitative performance of the participants

in previous research (Smith et al., 2006). In addition, the ac-

curacy of the two groups is functionally identical, especially

for those stimuli near the category bound. Thus, in our pre-

screening sample, the task appears to be equally difficult for

both high- and low-uncertainty responders, and the

uncertainty-response profile peaks near the category bound.

Of the 70 participants who met the inclusion criterion, 32

were able or willing to participate in the full fMRI experiment.

The procedure during the scanning session was identical to

the lab session except that timing in the scanner was slightly

different in order to synchronize stimulus and feedback with

the scanner TRs. In the scanner, stimuli and feedback were

presented for 2000 msec each and stimuli were no longer

response terminated. Prior to the actual scanning session,

participants completed a brief practice block of 40 trials in the

laboratory that was matched to the timing of the scanning

experiment, to reacquaint them with the task and to famil-

iarize them with the new timing and pace. In the scanner,

each participant completed six blocks across six functional
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Fig. 3 e Average proportion of correct responses (open gray

squares) and uncertainty responses (closed black circles)

across all 41 density levels for (a) liberal (n ¼ 70), and (b)

conservative (n ¼ 86) uncertainty responders. Note that

density Level 21, which separates sparse and dense

stimuli, was never shown to participants.
runs with 83 stimuli per block. The first 10 TRs of each func-

tional run were left blank to allow adequate time to reach

steady-state scanning; similarly, the last 10 TRs were left

blank to allow the BOLD response to decay from previous

trials. Fig. 4 provides a visual representation of the trial timing.

The number of TRs prior to stimulus (maximum of 5) and

feedback (maximum of 3) presentation were jittered using a

truncated geometric distribution with p ¼ .5. Stimulus and

feedback each lasted one TR (2000 msec). Whenever more

than one TR preceded stimulus presentation, a crosshair was

shown for half of the TR (1000 msec) immediately preceding

stimulus presentation in order to reorient the participants'
attention to the pending stimulus presentation (occurring on

48% of all trials).

2.5. Neuroimaging acquisition

The scanning sessions were conducted at the UCSB Brain

Imaging Center using a 3T Siemens Tim TrioMRI scanner with

an 8-channel phased array head coil. Cushions were placed

around the head to minimize head motion. Functional runs

used a T2* weighted single shot gradient echo, echo-planar

sequence sensitive to BOLD contrast (TR: 2000 msec, TE:

30 msec, FA: 90�, FOV: 192 mm) with generalized auto-

calibrating partially parallel acquisitions (GRAPPA). Each vol-

ume consisted of 33 slices (interleaved acquisition, 3mm thick

with .5 mm gap, 3 mm � 3 mm in-plane resolution, 64 � 64

matrix) acquired at an angle manually adjusted to minimize

in-plane artifact susceptibility near orbitofrontal cortex from

sinus cavities (Deichmann, Gottfried, Hutton, & Turner, 2003).

A localizer, a GRE field map (3 mm thick, FOV: 192 mm, voxel:

3 � 3 � 3 mm, FA ¼ 60�), and a T1-flash structural scan

(TR ¼ 15 msec, TE ¼ 4.2 msec, FA ¼ 20�, 192 sagittal slices 3-D

acquisition, .89mm thick, FOV: 220mm, voxel: .9� .9� .9mm,

256 � 256 matrix) were obtained before the EPI scans, and an

additional GRE field-mapping scan was acquired at the end of

each scanning session. Slice orientation was identical for all

GRE and EPI sequences. Each scanning session lasted about

90 min.

2.6. Neuroimaging GLM analyses

Preprocessing and data analysis were conducted using FSL's
(www.fmrib.ox.ac.uk/fsl) FEAT (FMRI Expert Analysis Tool,

version 6.00) software package. Preprocessing was carried out

separately on each EPI scan. Preprocessing included motion

correction using MCFLIRT (Jenkinson, Bannister, Brady, &

Smith, 2002), BET brain extraction (Smith, 2002), spatial

smoothing with a 5 mm FWHM kernel, grand-mean intensity

normalization, and a high pass filter with a cutoff of .02 Hz.

Functional data were assessed for exclusion if excessive head

motion (i.e., >3 mm) occurred; no EPI sequences exceeded

criterion. The high-resolution structural scan was registered

to the MNI152-T1-2mm standard brain via FLIRT (Jenkinson&

Smith, 2001; Jenkinson et al., 2002) and further refined using

FNIRT (nonlinear registration; Anderson, Jenkinson, & Smith,

2007). A transformation for each functional scan to the stan-

dard brain was generated using a two-step process to improve

alignment first by registering each EPI to the T1-flash struc-

tural scan and then registering the T1-flash structural scan to

http://www.fmrib.ox.ac.uk/fsl
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the standard brain MNI152 brain template. These trans-

formations were applied at the mid-level analysis (described

below).

Low-level analyses were performed using FEAT separately

for every BOLD scan (i.e., each block of the experiment). Six

explanatory variables (events)were defined post-hoc using each

participant's responses. Stimulus trials were redefined in one of

three ways depending on a participant's unique responses:

“correct categorization stimulus” for every trial on which a

participant emitted a correct Sparse/Dense response; “incorrect

categorization stimulus” for every incorrect Sparse/Dense

response; and “uncertain stimulus” for uncertainty-response

trials. All feedback events were redefined in the same way

(e.g., correct feedback, etc.). Because our goal was to model the

brain response related to the decision processes for each stim-

ulus, the stimulus events were modeled as boxcar functions

with a height of one and duration determined by observed

response times (RTs)dthe behavioral index of a final decision.

This procedure was used to capture variation in pre-decisional

processing time across different stimulus events. Feedback

events had a height of one and duration of 2 sec. To generate a

predicted BOLD time course for analysis, the boxcar was

convolved with an HRF (gamma function with a standard devi-

ation of 3 sec and a mean lag of 6 sec). All GLM analyses addi-

tionally included six unconvolved motion correction nuisance

parameters in order to capture signal changes due to subjects'
movement.

We performed two different GLM analyses. The first anal-

ysis was designed to identify brain regions that respond to

uncertainty, categorization, or task difficulty. This analysis

included regressors for the three experimental events (as

defined above). In addition to those events, three parametric

modulator terms (one each for correct, incorrect, and URs)

were included to capture any variation in the BOLD signal due

to stimulus difficulty as measured by absolute distance to

bound. We can use these regressors in two ways: first, as a

means of addressing the potential confound between uncer-

tainty and task difficulty (see below for more details), and

second, to find further evidence that there are distinct pro-

cesses underlying uncertain events compared to categoriza-

tion events. In particular, to the extent that the neural results

for distance to bound differ across event types, it strongly

argues against the notion that there is a unitary process

responsible for the different events.

For the three distance-to-bound regressors, the height of the

boxcar was determined by a simple linear function so that

stimuli far from the bound were modeled with a tall boxcar

(maximumheight of 1 for stimulus levels 1 and 41), and stimuli

close to theboundweremodeledwith a short boxcar (minimum

height of 0 for stimulus Level 21). Eachof these threeparametric

regressors was mean centered relative to the average non-zero
boxcar height for the corresponding event type on a block-by-

block basis, guaranteeing the three parametric regressors were

uncorrelated with the stimulus EVs. Note that this procedure

intentionally leaves differences in the event-wise mean

distance-to-bound: uncertainty events had an average distance

of .163, correct events .331, and incorrect events .136. However,

because the ranges of the distance-to-bound regressors are

much larger than themean differences between events, we can

combine these distance-to-bound regressors to identify regions

that are exclusively responsive to distance-to-bound (irre-

spective of trial type), and mask out these regions in our con-

trasts of interest involving uncertainty events in order to

alleviate the difficulty confound mentioned above. A total of

nine regressors were included in this model (in addition to the

motion parameters): three stimulus events (correct, incorrect,

uncertain); three feedback events, one for each stimulus type;

and three parametric regressors, one for each stimulus type.

ThesecondGLManalysiswasdesigned totest thehypothesis

thatuncertaintyeventsdparticularly thosecloseto thecategory

bounddare more compatible with a “middle-category” catego-

rization response than a metacognitive judgment. For this

analysis, regressors were included for each of the experimental

events, but were re-defined to separately estimate “near to

bound” events from “far from bound” events. This affords the

opportunity to directly assess whether particular brain regions

respond differentially to near or far stimulus events. Note that

delineating “near” from “far” in this way also splits the stimuli

into more or less difficult groups; because the goal of this anal-

ysis is to make distance/difficulty comparisons within event

types, the parametric distance-to-bound regressors were not

included. A total of 12 regressors were included in this model:

three stimulus events and three feedback events (correct,

incorrect, uncertain) for each distance group.

After low-level analyses were complete, the results were

input into mid-level analyses to aggregate the block data for

each participant using a fixed effects model. For each partic-

ipant, the mid-level analyses yielded a statistical z-map for

every contrast. Finally, the results of mid-level analyses were

transformed into MNI standard space and input into a high-

level analysis to generate group maps using a mixed effects

model (FLAME 1; Woolrich, 2008). After specifying a minimum

z threshold for each voxel, Gaussian random field theory was

used to estimate a cluster-size threshold to achieve a specific

experiment-wise false positive rate (Ashby, 2011; Friston,

Worsley, Frackowiak, Mazziotta, & Evans, 1994).
3. Results

The results are reported in several parts. First, the behavioral

results from the fMRI session are presented. Next, whole-

http://dx.doi.org/10.1016/j.cortex.2015.07.028
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brain functional imaging results using a standard general

linear model (GLM) approach are described for several con-

trasts of events and the parametric distance-to-bound mod-

ulators. Finally, results of a secondGLManalysis are presented

to directly test whether uncertainty events are compatible

with a “middle” categorization stimulus event. All neuro-

imaging results are from high-level analyses, which

include all 29 participants counterbalanced for left/right hand

response assignment.

For all GLM analyses, two different thresholds were used to

identify active clusters. A more conservative threshold (initial

z-threshold of 3.54 with a cluster significance threshold

a¼ .01) was used to match false-positive rates across reported
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Fig. 5 e (a) Average proportion of correct responses (open

gray squares) and uncertainty responses (closed black

circles) across all 41 density levels. Note that density Level

21 was never shown to participants and separated sparse

and dense stimuli. (b). Average response times for Sparse/

Dense categorization (open gray squares) and Uncertainty

(closed black circles) responses across all 41 density levels.
contrasts. A more liberal threshold (z ¼ 2.58, a ¼ .05) was used

to increase (and approximately match) power across reported

contrasts at the cost of a greater false-positive rate. We focus

on the results of either the liberal or conservative threshold in

every case (andwe report the results using the other threshold

in supplementary materials, where applicable). Our justifica-

tion for which threshold we use in each case is straightfor-

ward: in cases where we favor the alternative hypothesis (e.g.,

we believe that differences exist between conditions or

events), we focus on the results using the conservative

threshold (so that any detected differences are statistically

conservative, lending more credibility to our results when

differences are found), and only focus on the liberal results if

nothing survives the conservative correction, in which case

we treat the results as more exploratory. In cases where we

favor the null hypothesis (e.g., we believe no differences exist

between conditions or events), we focus on results using the

liberal threshold (so there is statistically enough power to

guard against failing to disconfirm the null hypothesis due to a

lack of power).

3.1. Behavioral results

Behavioral performance was assessed by calculating the

average proportion of correct responses and URs separately

for each density level across participants. Proportion of cor-

rect responses was calculated by dividing the number of cor-

rect responses by the number of categorization responses (i.e.,

accuracy was computed only for completed categorization

trials); proportion of URs was calculated by dividing the

number of URs by the total number of trials. Fig. 5a presents

the averaged correct/uncertainty curves across all 29 partici-

pants. As expected, accuracy decreased toward chance as the

density level moved closer to the Sparse/Dense category

boundary, whereas uncertainty responding increased toward

its maximum at the category boundary. Similarly, partici-

pants'mean RTs for both categorization responses and URs at

each density level are shown in Fig. 5b. Whereas categoriza-

tion RT appears generally to increase for responses as the

stimuli become most difficult (e.g., at the Level 21 boundary),

mean RT for URs remains uniformly longer than for catego-

rization responses and are relatively constant across stimulus

levels.

3.2. Uncertainty, categorization, and distance-to-bound
results

Whole brain group results were computed for correct re-

sponses and for URs, along with the distance-to-bound re-

gressors. We focus first on the latter, which frame our

understanding of the results for the former. For the distance-

to-bound regressors, we focus on three varieties of contrasts.

The first is each regressor by itself (i.e., versus baseline). This

is the most basic result, and can give an overview of which

event types (of uncertain, correct, or incorrect) evince

distance-to-bound effects. The second set of contrasts are

direct contrasts between each pair of event types. These

contrasts follow up on the patterns of results from the first

group, and can confirm whether apparent differences be-

tween events hold up in a direct contrast. Finally, the third

http://dx.doi.org/10.1016/j.cortex.2015.07.028
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contrast combines the three regressors equally, and tests that

their sum is nonzero. Because it imposes a constraint that the

distance-to-bound effect be event-type agnostic, this contrast

is meant to identify voxels whose activity is due only to dis-

tance to bound per se. In later contrasts between uncertain

and correct events, which differ in mean distance-to-bound

(see section 2.6), significant results in any voxel might plau-

sibly be due distance to bound, rather than to the event types.

Therefore, we can conservatively use the results of this

contrast to mask our primary contrasts of interest.

For analyses focusing on uncertain and correct events, the

results are summarized for the contrast “correct

categorization > uncertain” and for the contrast

“uncertain > correct categorization”. In a sense, correct trials

represent the purest instances of categorization-related pro-

cessing, so these contrasts are expected to separate

categorization-related regions from UR-related regions (if they

are, in fact, separable). Incorrect trialsaremorecloselymatched

to UR trials in terms of their distribution across density levels.

However, our inclusion of distance-to-bound regressors allows

us to isolate effects related to such distributional differences.

Moreover, errors can occur for multiple reasons, including a

failure of normal categorization-related processing, and in that

sense, may represent a less pure separation of categorization

and UR processes. All results reported for correct trials are

qualitatively unchangedwhen using incorrect trials, and sowe

focus our analyses on correct categorization trials.

3.2.1. Parametric distance-to-bound modulators
Including parametric distance-to-bound modulators in the

model provides an opportunity to identify voxels whose BOLD

signal is modulated by stimulus difficulty as indexed by stim-

ulus distance-to-bound. For this first analysis, we simply

tested the single-parameter estimates against the null hy-

pothesis that they are equal to zero. Positive parameter
Fig. 6 e Whole-brain results from the correct response distance

medial cortical surface. Images are cluster thresholded (correcti
estimates (i.e., significantly greater than zero) indicate that a

voxel'sBOLDsignal amplitude ishigher for stimuli farther from

the bound (and vice versa for negative parameter estimates).

We tested theparametric distance-to-boundmodulators forall

three response types (uncertainty, correct, and incorrect)

separately. For both the incorrect and uncertainty distance-to-

bound regressors, no voxels were significantly different than

zero in either direction even at our more liberal threshold

(z¼±2.58, p< .05) suggesting distance-to-bound on these trials

did not modulate the BOLD response in any voxel. For the

correct response distance-to-bound modulator, several sig-

nificant clusters were identified (using a threshold of z ¼ 3.54,

p < .01; see Fig. 6 and Supplementary Table 1). This result in-

dicates that many voxels' amplitude is higher for correct

categorization stimuli far from the boundary relative to those

close to the boundary. No voxels survived the converse

contrast, even at themore liberal threshold (z¼�2.58, p < .05).

To explore these single-regressor results more closely, we

carried out each pairwise comparison between event types.

Neither of the contrasts involving incorrect events had any

significant voxels in either direction (z ¼ ±2.58, p < .05),

possibly due to the relatively small number of events for that

event type (69.9 incorrect responses on average per partici-

pant over the entire experimentdmuch less than the 257.7

correct or 165.3 uncertain responses averaged per participant).

However, for the direct contrast between the correct and un-

certain distance-to-bound regressors, several clusters are

present for correct > uncertain at our more liberal threshold

(z ¼ 2.58, p < .05, shown in Fig. 7 and Supplementary Table 2;

there were no significant results for the converse contrast).

For the most part, these results are a subset of the results for

correct distance-to-bound regressor alone (Fig. 6): 83.4% (925/

1109) of the voxels in this contrast are present in the correct

alone results [and note that this is using the results for the

more conservatively thresholded correct distance-to-bound
-to-bound modulator projected on an inflated lateral and

ng for multiple comparisons) at z > 3.54, p < .01.

http://dx.doi.org/10.1016/j.cortex.2015.07.028
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Fig. 7 eWhole-brain results for the direct contrast between correct and uncertain distance-to-bound regressors projected on

an inflated lateral and medial cortical surface. Images are cluster thresholded (correcting for multiple comparisons) at

z > 2.58, p < .05.
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results; the overlap would necessarily be as large or larger

using the more liberal threshold (shown in Supplementary

Fig. S1)]. In a sense, these parametric modulator results are

compatible with the pattern of behavioral response times

(shown in Fig. 5b). Uncertainty RT remains relatively constant

across all stimulus distances, as does the amplitude of the

BOLD response. On the other hand, correct categorization RT

decreases with distance to bound, and BOLD amplitude in-

creases (in at least a small number of regions).

The last result from our analyses of the distance-to-bound

regressors is the combined contrast, which compares the

average parameter estimate across the three trial-type-

specific distance-to-bound regressors against zero. Although

therewere no significant results in either direction even at our

“liberal” threshold of z¼ 2.58, p < .05, we relaxed the threshold

to z ¼ 1.96, p < .05. Remember that these results will only be

used to identify voxels whose activity in contrasts between

correct and uncertain trials (see below) might be due purely to

distance to bound, so a liberal threshold here is conservative

with respect to our contrast of interest. At this liberal

threshold, several significant clusters are evidentdshown in

Fig. 8 and listed in Table 1. As we present later results, we will

refer back to this result to identify regions whose activity may

be driven by difficulty.1
1 As a secondary confirmation, we conducted a complementary
GLM analysis, which specified a single distance-to-bound re-
gressor (i.e., collapsing across the three event types, each
demeaned relative to its own event-specific mean distance to
bound). The resulting statistical map from this single regressor
was qualitatively very similar to the results of the combined
contrast, confirming that this analysis successfully identifies
voxels purely responding to distance to bound, irrespective of
trial type.
3.2.2. Correct > uncertain
The purpose of this contrast was to identify brain regions

unique to correct categorization decisions (i.e., distinct from

URs). Fig. 9 shows significant clusters on lateral and medial

cortical views. Table 2 lists the coordinates in MNI space and z

statistic for the peak voxel in each cluster as well as the

anatomical region at the peak voxel. Using the conservative

threshold (z ¼ 3.54 and p < .01), four significant clus-

tersdincluding two clusters spanning regions of the occipital

lobe bilaterally, one cluster in left striatum extending from the

head of the caudate ventrally to nucleus accumbens (NAcc),

and a cluster near the posterior extent of the right middle and

inferior frontal gyridremained after thresholding (see Table 2

and Fig. 9; see Supplementary Fig. S2 for the liberal threshold

map).When comparing thesemaps to the combined distance-

to-bound result described above, .8% of the voxels at the

conservative threshold (16/1973) are common to both images

(2.6% common using the liberal threshold; see Supplementary

Fig. S3 for the overlap map).

3.2.3. Uncertain > correct
The purpose of this contrast was to identify brain regions

uniquely related to uncertainty responding (versus successful

categorization). Fig. 10 displays significant clusters using our

conservative threshold (z ¼ 3.54 and p < .01) on lateral and

medial cortical views. Significant clusters appeared

throughout the brain; a total of 12 clusters survived thresh-

olding (Table 3; see Supplementary Fig. S4 for the liberal

threshold map).

The largest significant clusters each spanned the middle

frontal gyrus of the PFC bilaterallydlargely overlapping with

BA9 or DLPFCdand extending near dorsal medial PFC.

http://dx.doi.org/10.1016/j.cortex.2015.07.028
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Fig. 8 eWhole-brain results for the combined distance-to-bound contrast projected on an inflated lateral andmedial cortical

surface. Table 1 lists the coordinates and number of voxels for every significant cluster. Images are cluster thresholded

(correcting for multiple comparisons) at z > 1.96, p < .05.

Table 1 e Combined distance-to-bound contrast.

Cluster Anatomic regions # voxels Max z-stat x (mm) y (mm) z (mm)

5 Superior lateral occipital cortex (L) 1285 3.56 �14 �70 54

4 Posterior supramarginal gurys (L) 1139 3.69 �54 �46 40

3 Posterior supramarginal gurys (R) 804 3.3 54 �40 40

2 Middle temporal gyrus (R) 667 3.47 60 �52 4

1 Middle temporal gyrus (L) 596 3.21 �56 �62 �2

Significant cluster sizes and locations for the combined distance to bound contrast. For each significant cluster, the number of voxels,

maximum z-statistic, anatomical region (from the HarvardeOxford Structural Atlas) and (x, y, z)mm coordinates (in MNI standard space) of the

max z-statistic are presented.
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Significant clusters were also observed in a variety of other

regions, including: caudal superior frontal gyrus (bilateral);

both ACC and PCC; angular gyrus extending into lateral oc-

cipital regions (bilateral); left insular cortex; and the middle

temporal gyrus.When comparing thesemaps to the combined

distance-to-bound result described above, 4.0% of the voxels

at the conservative threshold (218/5497) are common to both

images (4.1% common using the liberal threshold; see

Supplementary Fig. S5 for the overlap map).

3.3. Metacognitive uncertainty versus middle-category
response

The metacognitive and middle-category accounts of the UR

make very different psychological assumptions. Even so, at

the behavioral level they make many similar predictions. For

example, both theories predict that the most frequent and

easiest URs will be to stimuli near the boundary between the

sparse and dense categories. In the case of the metacognitive
theory, this is because these stimuli are the most difficult to

categorize and therefore most likely to engender uncertainty

and elicit the UR. In the case of the middle-category theory,

this is because these stimuli are in the center of the middle

(UR) category and therefore are the most prototypical “middle

category” exemplars. Despite the similarity between the the-

ories at the behavioral level, they make strikingly different

fMRI predictions.

In particular, the metacognitive theory predicts that UR

responses rely on a distinct (or supplementary) set of regions

compared to categorization responses, regardless of whether

they are close to the sparseedense boundary. The middle-

category theory, on the other hand, views near-to-bound

URs as correct responses, while far-to-bound URs are incor-

rect. To test between the metacognitive and middle-category

accounts of the UR, we subdivided the stimuli into two sets:

1. stimuli near to the sparseedense boundary, and 2. stimuli

far from this boundary. More specifically, for the following

analyses, “near events” were defined as those trials on which

http://dx.doi.org/10.1016/j.cortex.2015.07.028
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Fig. 9 e Whole-brain results from the correct categorization > uncertainty contrast projected on an inflated lateral and

medial cortical surface. Table 2 lists the coordinates and number of voxels for every significant cluster. Images are cluster

thresholded (correcting for multiple comparisons) at z > 3.54, p < .01.

Table 2 e Correct categorization > uncertainty contrast.

Cluster Anatomic regions # voxels Max z-stat x (mm) y (mm) z (mm)

4 Occipital and temporal lobes (L) 965 6.18 �18 �92 �10

3 Occipital and temporal lobes (R) 819 5.17 26 �86 �10

2 Inferior and middle frontal frontal gyrus (R) 112 5.42 40 8 30

1 Caudate/nucleus accumbens (L) 77 4.71 �8 6 �10

Significant cluster sizes and locations for the correct categorization > uncertainty contrast. For each significant cluster, the number of voxels,

maximum z-statistic, anatomical region (from the HarvardeOxford Structural Atlas) and (x, y, z)mm coordinates (in MNI standard space) of the

max z-statistic are presented.
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the stimuli were within ±3 bins from the sparse/dense

boundary (bins 18, 19, 20, 22, 23, and 24) and “far events” were

defined as those trials on which the stimuli were more than 3

bins from this boundary. Using this definition, the average

number of near URs across participants (87.9) was well

matched to the average number of far URs (73.8), near correct

responses (73.8), as well as to the average number of far cor-

rect sparse and dense responses (91.9). Thus, ±3 bins appears

to be a reasonable criterion for defining a putative middle-

category region, both qualitatively and quantitatively insofar

as the average number of responses in each region that would

be “correct” for the middle-category account are well-

matched.

We computed three contrasts of interest from this design.

The first two simply serve to directly test the hypothesis that

URs near to the category bound are more compatible with a

middle-category, and not ametacognitive judgment. The third

contrast leverages the near/far delineation to conduct an

additional test as to whether URs are modulated by task dif-

ficulty (i.e., distance to bound).
3.3.1. Near uncertainty > far correct
The middle-category account of the UR predicts that near URs

and far correct responses should be functionally identical

because each is essentially a correct categorization response.

On the other hand, the metacognitive account of the UR pre-

dicts this contrast should produce similar results to the

uncertain > correct contrast described in section 3.2.3. Note,

however, that any supra-threshold voxels in this contrast

argue counter to the middle-category account, regardless of

where those voxels are spatially distributed. The results of

this contrast show many significant clusters similar to those

in Fig. 10 at both our liberal and conservative thresholds (see

supplementary Fig. S6). These results are therefore in line

with predictions of the metacognitive framework of the UR

and counter to the predictions of the middle-category

account.

3.3.2. Far uncertainty > near correct
The middle-category account of the UR predicts that far URs

and near categorization responses are both a kind of

http://dx.doi.org/10.1016/j.cortex.2015.07.028
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Fig. 10 e Whole-brain results from the uncertainty > categorization contrast projected on an inflated lateral and medial

cortical surface. Table 3 lists the coordinates and number of voxels for every significant cluster. Images are cluster

thresholded (correcting for multiple comparisons) at z > 3.54, p < .01.

Table 3 e Uncertainty > correct categorization contrast.

Cluster Anatomic regions # voxels Max z-stat x (mm) y (mm) z (mm)

11 Middle frontal gyrus, DLPFC (L) 1329 5.85 �22 54 24

10 Middle frontal gyrus, DLPFC (R) 1147 5.13 10 62 22

9 Angular gyrus (R) 942 5.03 54 �46 26

8 Angular gyrus/lateral occipital (L) 720 4.78 �58 �60 36

7 SFG (R) 476 5 12 26 58

6 SFG (L) 268 4.89 �18 14 60

5 Insula (L) 206 4.66 �32 8 8

4 Cingulate (anterior) 142 4.67 0 22 26

3 Superior parietal lobule (R) 117 4.3 24 �42 66

2 Middle/superior temporal gurys (R) 80 4.48 46 �36 0

1 Cingulate (posterior) 70 4.47 �6 �8 38

Significant clusters for the uncertainty > correct categorization contrast. For each significant cluster, the number of voxels, maximum z-sta-

tistic, anatomical region (from the HarvardeOxford Structural Atlas) and (x, y, z) mm coordinates (in MNI standard space) of the max z-statistic

are presented.
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incorrect response (because URs should only be made in the

near region whereas sparse/dense categorization responses

principally reflect responses that should be made in the far

region) and so activation to each should be functionally

identical. In contrast, the metacognitive account of the UR

again predicts results similar to the uncertain > correct

contrast reported in section 3.2.2 (and again, any supra-

threshold voxels argue against the middle-category ac-

count). The results of this contrast also show many signifi-

cant voxels similar to those in Fig. 10 at both our liberal and

conservative thresholds (see supplementary Fig. S7). Thus,

these results are again in line with the predictions of the

metacognitive framework and counter to the prediction of

the middle-category theory.
3.3.3. Uncertainty and task difficulty
It is clear that the most difficult stimuli (those close to the

sparse/dense boundary) most frequently receive URs. There-

fore, it seems possible that the UR is an admission of difficulty

rather than ametacognitive judgment. Although our analyses

including parametric distance-to-bound modulator terms

addresses whether any voxels are modulated by difficulty/

distance (which we can then exclude in subsequent analyses,

as above), another way to test this is to directly compare the

brain activation to URs made to more or less difficult stimuli.

Labeling our stimulus bins as near and far serves as a rough

segregation of events into more or less difficult stimuli and

affords a direct comparison between the most difficult (near)

and easiest (far) stimuli.

http://dx.doi.org/10.1016/j.cortex.2015.07.028
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If the UR is driven by uncertainty rather than task diffi-

culty, then the activity maps for uncertain responses should

be the same for near and far events (i.e., unrelated to task

difficulty, per se). However, if task difficulty plays an impor-

tant role in the UR activations, then there should be many

voxels that show a stronger response to the near events than

to the far events. To test this hypothesis, we generated a

contrast directly comparing near uncertainwith far uncertain.

Even using our liberal cluster-based threshold, no voxels in

this analysis were significant. Thus, this analysis produced no

evidence that any voxels sensitive to the URwere significantly

driven by task difficulty. Similarly, it is unlikely that the dif-

ferences observed above between correct and uncertainty are

due to task difficulty.
4. Discussion

The results of this research support themetacognitive over the

middle-category account of the UR. At the broadest level, our

results demonstrate that URs are not middle-category re-

sponses that simply partition the stimuli into three categories.

Instead, as predicted by the metacognitive theory of UR, we

found distinct behavioral response profiles and qualitatively

different neural activation for URs and categorization re-

sponses (Fig. 10). The middle-category theory makes the

opposite prediction (i.e., that all responses are “categorization”

responses), which was not supported by our data. In addition,

themiddle-category theory predicts that URs to stimuli near to

the sparse/dense category boundary reflect themost confident

use of the UR (as these stimuli are most prototypical of the

middle category) and should therefore elicit neural activity

similar to that elicited during correct responses far from the

bound. We did not find support for this prediction.

Our results further demonstrate that brain regions

responding to theURaredistinct fromthose responding to task

difficulty. In fact, while it is clear that URs occur most

frequently for only themost difficult stimuli (i.e., closest to the

categorization bound; Fig. 5a), our analyses identified a

consistent collection of brain regions related to the UR, which

were generally invariant to various corrections for task diffi-

culty. First, after dividing the stimulus space into “near” and

“far” regions from the category boundary, we found that pro-

files of brain structures particular to the UR did not differ

significantly as a function of distance to the sparse/dense

bounddin other words, URs near to the bound and URs far

fromtheboundwerestatistically indistinguishable inourdata.

Second, in a separate analysis, our inclusion of parametric

distance-to-bound modulator terms afforded the ability to

specifically look for brain regionswhose signal ismodulatedby

stimulus difficulty separately for categorization and URs. We

found no support that distance-to-bound for URs modulated

the signal of anyvoxel; however,manyvoxelswere sensitive to

distance-to-bound for categorization trials. This suggests

distinct processes on these different types of trials.

Note that our analyses include both trial-by-trial duration

scaling of the stimulus-event boxcars based on the subjects'
observed RT (which varies systematically between response

types as in Fig 5), as well as parametric distance to bound

modulators. Both methods may be expected to capture some
variation in task difficulty: longer RTs occur for trials close to

the bound, which are also the least accurate trials. However,

in the present application, RT-scaling of the primary stimulus

events uniquely (and more effectively) models the trial-by-

trial decision processes in contradistinction to modeling RT

as its own independent regressor to capture both RT and dif-

ficulty/distance variability in one event, as is common in some

fMRI analyses. Here, the parametric modulators are designed

to capture specific distance to bound effects. We believe the

combination of the two simultaneously controls for difficulty

differences while also accounting for RT differences in pro-

cessing times.

The mere fact that there were differences in the distance-

to-bound effects between UR and correct trials is enough to

strongly suggest that these events are subserved by distinct

cognitive processes. However, the spatial pattern of the

distance-to-bound effect we observed is interesting in its own

right. In particular, our results demonstrating increased ac-

tivity far from the bound on correct trials (Fig. 6) are intuitively

appealing, in that the pattern of activity very closely matches

the canonical defaultmodenetwork (Greicius, Krasnow, Reiss,

&Menon, 2003). One possible explanation for this result is that

the need for task engagement reduces as category response

confidence increases; thus the neural modulation in those

confident (easier) categorization trials reflects activation in

the default mode network. Likewise, the regions that show

differential distance-to-bound effects for correct versus UR

trials match our expectations, including somatomotor

areas (spanning pre- and post-central gyrus and supplemen-

tary motor area) and anterior superior frontal gyrus. The

former may reflect something like response preparation or

evidence accumulation, while the latter has previously been

associated with greater activation to reward versus loss

(Cohen, Elger, et al., 2008; Cohen, Fair, et al., 2008; Smith et al.,

2010; Xue et al., 2009).

Focusing on our simple contrasts between UR and correct

trials, we identified a collection of regions responsive to the

UR widely distributed throughout the brain (Fig. 10), suggest-

ing a complex and engaging psychological state. Critically,

these brain regions are largely distinct from the regions

identified in our investigation of “general” distance-to-bound-

(i.e., difficulty-) sensitive processes combined across event

types (Fig. 8), sharing a scant 4% of supra-threshold voxels at

our most liberal estimate. Despite differences in average

distance-to-bound between event types, any attempt to claim

that our uncertainty versus categorization results reflect

purely difficulty differences must predict that the same re-

gions will appear in the contrast for parametricmodulation by

distance-to-bound. Instead, we observed minimal overlap

between regions that respond to uncertainty and those that

are sensitive to distance to bound.

Uncertainty monitoring, whether related to response-

conflict, risk, or anticipated errors, correlates with some or

all of a group of regions that include medial PFC, posterior

parietal, ACC, PCC, and AI (e.g., Botvinick, Cohen, & Carter,

2004; Carter et al., 1998; Fleck et al., 2006; Grinband et al.,

2006; Huettel, et al., 2005; Kable & Glimcher, 2007;

MacDonald et al., 2000; McCoy & Platt, 2005; Platt & Huettel,

2008; Ridderinkhof et al., 2004; Stern et al., 2010; Ullsperger

et al. 2010; Volz et al., 2004). ACC is in the position to relay
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this uncertainty information via its strong connections with

dorsal and lateral PFC, regions that have been documented to

bring about behavioral adjustment or exert top-down control

and that overlap with our results (Cohen et al., 1997; Fleck

et al., 2006; Huettel et al., 2005; MacDonald et al., 2000; Miller

& Cohen, 2001; Miller, Freedman, & Wallis, 2002; Nee, Wager,

& Jonides, 2007; Ridderinkhof et al., 2004; Volz et al., 2004).

In our pre-trained task, stimuli near the boundary elicit a

known uncertainty resulting from precise probability esti-

mation [p(correct) ¼ .5 at the category boundary]. Uncertainty

associated with unknown probabilities is negatively corre-

lated with PCC activity (Bach et al., 2011). Other fMRI studies

have found PCC responses representing reward size or sub-

jective value (Ballard& Knutson, 2009; Kable&Glimcher, 2007,

2010; Peters & Büchel, 2009), and prediction of task errors (Li,

Yan, Bergquist, & Sinha, 2007). We observed significant vox-

els spanning the PCC, where activity in our task may reflect

the subjective positive valuation of successfully escaping a

high probability of error.

One possibility is that the PCC, ACC, insula and the medial

PFC provide evidence of uncertainty to the DLPFC, which may

then take control and change the strategy from categorization

to a UR. Other metacognition neuroimaging research also

highlighted dACC and DLPFC in retrospective confidence

judgments, ascribing an especially important role to the most

anterior aspects of PFC (Fleming et al., 2012; Hilgenstock et al.,

2014; Rounis et al., 2010; Yokoyama et al., 2010). The PFC

cluster we identified also extends anteriorly to fronto-polar

regions, suggesting a metacognitive component of the UR.

Our results partially converge with Grinband et al. (2006)

finding that VS, medial PFC and AI correlate with categoriza-

tion uncertainty. Their task required a guess, while ours

required declining to guess. In our task VS activity was specific

to categorization trials, which suggests that VS activity in their

task was related to a categorization guess, while medial PFC

and AI seem to track uncertainty regardless of whether the

task requires guessing or opting out. On the surface our tasks

are very similar in that they both involve perceptual catego-

rization with increasing uncertainty near the boundary;

however, the option of an adaptive UR requires a qualitatively

different level of cognitive processing. Not surprisingly, we

found large clusters bilaterally, extending to themost anterior

aspects of PFC to which evolutionarily nascent functions have

been ascribed (Ramnani & Owen, 2004).

In contrast to uncertainty responding regions, correct

categorization recruited a relatively small set of regions (Fig. 9)

that included the right inferior frontal gyrus pars opercularis

(IFGpo), as well as bilateral striatum including the head of the

caudate and the NAcc. Both the right IFGpo and striatum are

commonly identified in rule-based categorization tasks (Aron,

Robbins,& Poldrack, 2004; Ashby, Paul,&Maddox, 2011; Helie,

Roeder, & Ashby, 2010). The contribution of ventral striatum

(VS) to correct categorization could be because of our design

choice to award points for correct responses: several studies

have reported NAcc activity related to anticipation of financial

gains or rewards (Knutson, Fong, Bennett, Adams,&Hommer,

2003; Knutson & Wimmer, 2007; O'Doherty, et al. 2004;

W€achter, Lungu, Liu, Willingham, & Ashe, 2009).

Behaviorally, the response profile observed here matches

those reported for humans by Smith et al. (2006), confirming
that the present task created sufficient uncertainty and eli-

cited highly engaging and adaptive URs. The distinctive RT

distributions across stimulus levels between categorization

and URs are also noteworthy: latencies for URs were relatively

long and invariant across stimulus levels, but for categoriza-

tion they increased systematically for more difficult trial

levels near the category boundary (Fig. 5b). These longer RTs

may indicate that greater cognitive effort is required during

URs. Taken together, the behavioral results further corrobo-

rate the distinctive psychological role of URs.

One important question is whether our results depended

on the particular point schemewe used to encourage frequent

URs. Healthy young adults often report dissatisfaction and

reluctance in using the UR (Smith, Shields,&Washburn, 2003),

even when the task is difficult. FMRI statistical analyses

require large samples of responses; the point scheme was

adopted in an attempt to maximize UR use. There are several

reasons to believe that our results were not unduly influenced

by this methodological choice. First, the behavioral results of

liberal and conservative “uncertain” responders were quali-

tatively the same (e.g., compare Fig. 3a and b). Second, the use

of different point schemes has not been shown to change the

general profile of uncertainty responding (e.g., our behavioral

results are qualitatively identical to Smith et al., 2006; wherein

a different point scheme was used). Objective point schemes

can reduce variability across participants, but there is no

reason to believe they change the underlying decision prob-

lem in any fundamental way.

The present research provides a particularly compelling

map of a UR network because it identified brain regions that

underlie the most direct measure of volitional uncertainty

responding yet studied. It did so within a psychophysical task

that provided a precise titration of trial difficulty. The para-

digm also afforded us the ability to observe directly and

selectively only those trials exceeding the risk threshold for

each individual participant. Finally, the behavioral nature of

our paradigm allowed us to study volitional URs shorn of

participants' introspected and explicitly declared reports of

uncertainty.

The present research also has theoretical implications

regarding the animal-metacognition literature (e.g., Kornell,

2009; Smith, 2009; Smith et al., 2012). Different species may

have evolved different mechanisms to deal with uncertainty.

URs are functionally isomorphic between human and rhesus

macaques (Fujita, 2009, p. 575; Roberts, Feeney, McMillan,

MacPherson, & Musolino, 2009, p. 130; Sutton &

Shettleworth, 2008, p. 266), while capuchin monkeys have

repeatedly failed to show the metacognitive performance

patterns thatmacaques show routinely (e.g., Basile, Hampton,

Suomi, &Murray, 2008; Beran, Smith, Coutinho, Couchman, &

Boomer, 2009; Fujita, 2009). Macaques' URs represent higher-

level and controlled decision making (Smith, et al., 2013),

while capuchins do not make any URs, but readily learn pri-

mary perceptual responses to a middle category (Beran, et al.,

2009). Our results may explain this behavioral dissociation.

Capuchins may have robustly in place the neural circuits that

ground the responses made to primary perceptual inputs like

Sparse, Middle, and Dense. But unlike the macaques, they

may have only weakly or primitively in place the networks

described in this article that ground the adaptive response of
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uncertainty. In terms of known neurobiology, macaques

possess much greater gyrification in frontal cortex than ca-

puchins, suggesting an overall greater expansion of neo-

cortex in these animals (Rilling & Insel, 1999). Similarly, ma-

caques have a greater proportion of granular PFC tissue than

other monkeys as well as a greater density of dendritic spines

in granular PFC tissue (Elston et al., 2006). Of course, humans'
granular PFC tissue and density of spinous neurons exceeds

all other primates. Elston and colleagues suggest that differ-

ences in PFC microstructure may underlie fundamental

cognitive differences in primates and could be integral to

human intelligence. Perhaps these differences also relate to

metacognitive capacity in different species.

Electrophysiological research has begun to explore URs in

macaques, and those results converge with our human fMRI

results. For example, neural responses in the lateral intra-

parietal cortex of the monkey reflect the degree of uncertainty

in an opt-out task similar to ours (Kiani & Shalden, 2009).

Furthermore, the pulvinar is inactivated when monkeys

escape perceptual categorization due to low confidence

(Komura et al., 2013). The pulvinar expanded during primate

evolution and receives inhibition from frontal and parietal

regions, which were active in our study. In order to better

compare whole-brain neural networks between humans and

animals, future neuroimaging research of theUR in nonhuman

primates will be necessary. Our results provide the ground-

work for such comparative research. Elucidating the neural

networks of humanURs lays the foundations for exploring and

comparing neural signatures of URs in other species, which

might confirm existing behavioral dissociations, and illumi-

nate the progression by which metacognition and the reflec-

tivemind emergedwithin the primate order. Suchwork carries

with it the potential to strengthen comparative psychology and

neuroanatomy as empirical sciences and integrate them more

fully within experimental psychology and cognitive neurosci-

ence as well as broadening our understanding of the evolution

of humans' remarkable cognitive capabilities.
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