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Objectives: This study examines the neural mechanisms that mediate the relationship
between phosphatidylcholine and executive functions in cognitively intact older adults.
We hypothesized that higher plasma levels of phosphatidylcholine are associated with
better performance on a particular component of the executive functions, namely
cognitive flexibility, and that this relationship is mediated by gray matter structure of
regions within the prefrontal cortex (PFC) that have been implicated in cognitive flexibility.

Methods: We examined 72 cognitively intact adults between the ages of 65 and
75 in an observational, cross-sectional study to investigate the relationship between
blood biomarkers of phosphatidylcholine, tests of cognitive flexibility (measured by the
Delis–Kaplan Executive Function System Trail Making Test), and gray matter structure
of regions within the PFC. A three-step mediation analysis was implemented using
multivariate linear regressions and we controlled for age, sex, education, income,
depression status, and body mass index.

Results: The mediation analysis revealed that gray matter thickness of one region within
the PFC, the left inferior PFC (Brodmann’s Area 45), mediates the relationship between
phosphatidylcholine blood biomarkers and cognitive flexibility.

Conclusion: These results suggest that particular nutrients may slow or prevent
age-related cognitive decline by influencing specific structures within the brain. This
report demonstrates a novel structural mediation between plasma phosphatidylcholine
levels and cognitive flexibility. Future work should examine the potential mechanisms
underlying this mediation, including phosphatidylcholine-dependent cell membrane
integrity of the inferior PFC and phosphatidylcholine-dependent cholinergic projections
to the inferior PFC.

Keywords: phosphatidylcholine, inferior prefrontal cortex, executive functions, cognitive aging, nutritional
cognitive neuroscience
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INTRODUCTION

A rapidly expanding older adult population has produced
significant medical and economic demands for the treatment
and care of individuals with age-related health disorders that
continue to rise. The prevalence of Alzheimer’s disease, for
example, is projected to increase in the United States from 5.1
to 13.2 million by 2050, and associated healthcare expenditures
are estimated to surpass one trillion dollars (Alzheimer’s
Association, 2013). Therefore, establishing a successful strategy
to promote healthy brain aging is of great interest to public
health efforts and the United States economy. Nutrition
and the many bioactive substances present in the diet
have been increasingly recognized as a promising target
for intervention efforts to promote healthy brain aging
(Zamroziewicz and Barbey, 2016). Identifying the means through
which dietary intake may influence brain health will guide the
development of successful dietary strategies for healthy brain
aging.

Accumulating evidence suggests that phosphatidylcholine is
a robust marker of age-related membrane degeneration and is
associated with cognitive decline (Zeisel, 2006; Frisardi et al.,
2011; Mapstone et al., 2014; Whiley et al., 2014; Norris et al.,
2015; Wurtman, 2015). Phosphatidylcholine is a phospholipid
that carries a choline head group (Li and Vance, 2008).
Phosphatidylcholine found in the blood may be derived
from dietary sources, or may be endogenously synthesized
by the phosphatidylethanolamine N-methyltransferase
(PEMT) pathway (Zeisel, 2006). Phosphatidylcholine serves
a neuroprotective role by providing an essential component
of neuronal membranes and a significant portion of the
total choline pool, which contributes to forebrain cholinergic
projections (Frisardi et al., 2011). However, the core brain
regions upon which phosphatidylcholine may act are unknown.
This study aims to investigate the neural structures that
mediate the relationship between plasma phosphatidylcholine
levels and an important aspect of cognitive aging, decline in
a component of the executive functions known as cognitive
flexibility.

Low plasma phosphatidylcholine levels are highly predictive
of cognitive decline, and low levels of important components of
phosphatidylcholine, including the long-chain polyunsaturated
fatty acid docosahexaenoic acid (DHA) and choline, are
predictive of age-related decline in executive functions (Beydoun
et al., 2007; Bowman et al., 2012; Nurk et al., 2013; Witte
et al., 2013; Naber et al., 2015). Executive functions traditionally
consist of planning and execution of goal-directed behaviors,
abstract reasoning, and judgment, but also reflect the efficiency
with which an individual applies his or her knowledge to
cope with everyday life (Stuss and Alexander, 2000; Princiotta
and Devries, 2014). Within the continuum of normal aging
or preclinical stages of dementia, the presence of executive
dysfunction may occur without measurable deficits in general
cognition. Therefore, executive dysfunction may be a robust
early marker of cognitive decline (Johnson et al., 2007).
Importantly, components of phosphatidylcholine, including
long-chain polyunsaturated fatty acids and choline, have been

associated with prefrontal cortical integrity and forebrain
cholinergic projections, respectively, suggesting a link between
phosphatidylcholine and the PFC-driven executive functions
(Kolisnyk et al., 2013; Zamroziewicz et al., 2015). More
specifically, long-chain polyunsaturated fatty acids have been
shown to influence cognitive flexibility, a component of the
executive functions (Bowman et al., 2013; Johnston et al.,
2013; Zamroziewicz et al., 2015). Cognitive flexibility refers
to the ability to adjust to new demands or rules, and
can be measured using task switching paradigms (Diamond,
2013).

Executive functions are implemented within the prefrontal
cortex (PFC), and particular aspects of the executive functions
may be localized to specific sub-regions within the PFC (Barbey
et al., 2012, 2013a,b,c, 2014a,b). Larger gray matter thickness and
volume in the PFC has been associated with better performance
on tasks that elicit executive functions (Kochunov et al., 2009;
Burzynska et al., 2012; Tu et al., 2012; Yuan and Raz, 2014). For
example, the inferior PFC has been implicated in the cognitive
control of memory, including semantic retrieval, recollection
of contextual details about past events, resolution of proactive
interference in working memory, and task switching (Badre
and Wagner, 2007). The inferior PFC is particularly susceptible
to age-related cortical thinning, and age-related changes in
cholinergic projections (Aron et al., 2004; Fjell et al., 2009).
Integrity of the left inferior PFC has been linked to cognitive
flexibility, as measured by task switching paradigms (Aron et al.,
2004).

In summary, prior research indicates that: (i)
phosphatidylcholine is highly predictive of age-related
cognitive decline; (ii) cognitive flexibility is an early marker of
cognitive decline amenable to the effects of phosphatidylcholine
components; and (iii) particular regions within the PFC, such
as the inferior PFC, are critical for cognitive flexibility and
susceptible to age-related degeneration. Therefore, we examined
the role of regions within the PFC in mediating the relationship
between plasma phosphatidylcholine and cognitive flexibility in
cognitively intact aging individuals.

MATERIALS AND METHODS

Participants
This cross-sectional study enrolled 122 elderly adults from
Carle Foundation Hospital, a local and readily available
cohort of well-characterized elderly adults. No participants
were cognitively impaired, as defined by a score of lower
than 26 on the Mini-Mental State Examination (Folstein
et al., 1975). Participants with a diagnosis of mild cognitive
impairment, dementia, psychiatric illness within the last 3 years,
stroke within the past 12 months, and cancer within the last
3 years were excluded. Participants were also excluded for
current chemotherapy or radiation, an inability to complete
study activities, prior involvement in cognitive training or
dietary intervention studies, and contraindications for magnetic
resonance imaging (MRI). Of these 122 participants, 72
subjects had a complete dataset at time of data analysis,
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including neuropsychological testing, MRI, and blood biomarker
analysis.

Standard Protocol Approval and
Participant Consent
This study was approved by the University of Illinois Institutional
Review Board and the Carle Hospital Institutional Review Board
and, in accordance with the stated guidelines, all participants read
and signed informed consent documents.

Biomarker Acquisition and Analysis
Plasma was spiked with stable labeled internal standards of
all the analytes, and extracted using the method modified
from Bligh and Dyer (1959). Samples were extracted with
methanol/chloroform (2:1, v/v). The mixture was vortexed
and left at −20◦C overnight. At the end of the extraction
with methanol/chloroform, samples were centrifuged and
supernatants transferred into new microcentrifuge tubes.
Residues were re-extracted with methanol/chloroform/water
(2:1:0.8, v/v/v). After vigorous vortexing and centrifugation,
supernatants were collected and combined with the first extract.
Water and chloroform were added into the resulting solutions
to allow for phase separation. After centrifugation, the organic
phase, which contains phosphatidylcholine, was 1:10 diluted
with methanol and transferred into HPLC vials for instrumental
analysis.

Quantification of the analytes was performed using liquid
chromatography-stable isotope dilution-multiple reaction
monitoring mass spectrometry (LC-SID-MRM/MS). Chromato-
graphic separations were performed on an Atlantis Silica HILIC
3 µm 4.6 × 50mm column (Waters Corp, Milford, CT, USA)
using a Waters ACQUITY UPLC system. The column was
heated to 40◦C, and the flow rate maintained at 1 mL/min.
The mobile phases were: A – 10% acetonitrile/90% water with
10 mM ammonium formate and 0.125% formic acid, and B –
90% acetonitrile/10% water with 10 mM ammonium formate
and 0.125% formic acid. For organic analytes, the gradient was at
5% A for 0.05 min, to 20% A in 2.95 min, to 55% A in 0.05 min, at
55% A in 0.95 min, to 5% A in 0.05 min, and at 5% A for 2.95 min.
The analytes and their corresponding isotopes were monitored
on a Waters TQ detector using characteristic precursor-product
ion transitions. Concentrations of each analyte in the samples
were determined using the peak area ratio of the analyte to its
isotope. MS parameters for phosphatidylcholine were as follows:
precursor at 193 m/z, product at 193 m/z. Phosphatidylcholine
levels were included in analyses as a continuous variable.

Neuropsychological Tests
Executive functions were measured by the Delis–Kaplan
Executive Function System (D–KEFS) Trail Making Test (Delis
et al., 2006). This assessment yields a measure of the executive
functions that can be isolated from underlying skills, including
visual scanning, number sequencing, letter sequencing, and
motor speed. In this task, participants alternate between multiple
task goals (either number or letter sequencing), which elicits a
specific component of the executive functions known as cognitive

flexibility. The reported results from the D-KEFS Trail Making
Test assess cognitive flexibility while controlling for number
and letter sequencing trials and therefore provide a measure
of cognitive flexibility that is not confounded by underlying
cognitive abilities (i.e., number and letter sequencing) required
by the task.

Volumetric Brain MRI
Volumetric analysis was performed on data from a 3D high-
resolution (0.9 mm isotropic) T1-weighted scan using MPRAGE
acquisition. Cortical reconstruction was performed with the
Freesurfer image analysis suite, which is documented and
freely available for download online1. The technical details of
these procedures are described in prior publications (Dale and
Sereno, 1993; Dale et al., 1999; Fischl et al., 1999a,b, 2001,
2002, 2004; Fischl and Dale, 2000; Fischl, 2004; Ségonne et al.,
2004; Han et al., 2006; Jovicich et al., 2006; Reuter et al.,
2010, 2012). All cortical reconstructions were manually checked
for accuracy, as recommended by the software developers.
This analysis focused on gray matter thickness in the PFC
provided by Freesurfer parcellation. These regions included the
superior frontal cortex, rostral middle frontal cortex, the caudal
middle frontal cortex, pars opercularis, pars triangularis, pars
orbitalis, lateral orbitofrontal cortex, medial orbitofrontal cortex,
precentral gyrus, paracentral gyrus, frontal pole, rostral anterior
cingulate cortex, and caudal anterior cingulate cortex.

Covariates
Covariates previously associated with cognitive decline (Coffey
et al., 1998, 1999; Fotenos et al., 2008; Gunstad et al., 2008;
Raz et al., 2010; van Tol et al., 2010) were tested, including
age (continuous), gender (nominal, man/woman), education
(ordinal, five fixed levels), income (ordinal, six fixed levels),
body mass index (continuous, BMI), and depression status
(nominal, yes/no). Although all participants had received a
diagnosis of no depression at enrollment, the SF-36 Health
Survey (Ware et al., 1993) revealed five participants with
symptoms consistent with depression and so, in accordance with
other studies, this was considered in the analysis as a covariate.
PFC gray matter thickness (continuous) was also included as a
covariate in mediation analyses to assess the relationship between
specific regions within the PFC, plasma phosphatidylcholine, and
cognitive flexibility. Covariates were included in each of the three
steps of the mediation analysis.

Statistical Analyses
A formal mediation analysis was used in an effort to better
understand the relationship between phosphatidylcholine levels,
gray matter thickness of regions within the PFC, and cognitive
flexibility using a three-step framework. The goal of the
mediation analysis was to understand whether the relationship
between phosphatidylcholine levels and cognitive flexibility
was mediated by gray matter thickness of regions within the
PFC. The primary requirement for mediation is a significant
indirect mediation effect, or the effect of the independent

1http://surfer.nmr.mgh.harvard.edu/
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variable (phosphatidylcholine) through the mediator (gray
matter thickness of a PFC region) on the dependent variable
(cognitive flexibility) (Zhao et al., 2010).

Statistics were performed in SPSS Statistical Packages version
23 (SPSS, Inc., Chicago, IL, USA), and mediation analyses were
performed using the indirect macro designed for SPSS (Preacher
and Hayes, 2008). Statistics were performed as follows:

(1) In the first step, a regression model was used to characterize
the relationship between phosphatidylcholine levels and
gray matter thickness of regions in the PFC, controlling for
the covariates in Section “Covariates” (path a).

(2) In the second step, a regression model was used to
characterize the relationship between phosphatidylcholine
levels and cognitive flexibility, controlling for the covariates
in Section “Covariates” (path c).

(3) In the third step, the indirect macro was used to implement
the bootstrapping method to estimate mediation effects.
This analysis drew 1000 bootstrapped samples with
replacement from the dataset to estimate a sampling
distribution for the indirect and direct mediation effects,
controlling for the covariates in Section “Covariates.”
The indirect mediation effect refers to the pathway
from phosphatidylcholine to gray matter thickness of
a PFC region to cognitive flexibility (path a–b). The
direct mediation effect refers to the direct pathway from
phosphatidylcholine to cognitive flexibility (path c’).

A statistically significant mediation that matched the
hypothesized framework was indicated by: (i) an indirect
mediation effect that did not include zero within 95% bias-
corrected confidence intervals, and (ii) a direct mediation effect
that did include zero within 95% bias-corrected confidence
intervals (Zhao et al., 2010). Results are reported using
unstandardized regression coefficients (β) and statistical
significance (p) for each individual regression relationship, and
a 95% bias-corrected confidence interval (95% CI) for the direct
and indirect effects of the mediation.

RESULTS

Participant Characteristics
Participants had a mean age of 69 years and 64 percent
of participants were females. Education levels were reported
as follows: 1 percent of participants completed some high
school, 14 percent of participants received a high school degree,
18 percent of participants completed some college, and 68 percent
of participants received a college degree. Annual household
income levels were reported as follows: 1 percent of participants
earned less than $15,000, 3 percent of participants earned
$15,000 to $25,000, 17 percent of participants earned $25,000 to
$50,000, 24 percent of participants earned $50,000 to $75,000,
22 percent of participants earned $75,000 to $100,000, and
33 percent of participants earned over $100,000. The mean
phosphatidylcholine level was 2101 µM. The mean D-KEFS Trail
Making Test cognitive flexibility score was 8. The mean gray

matter thickness of the left PFC was 2.39 mm, and mean gray
matter thickness of the left inferior PFC was 2.38 mm (Table 1).

Mediation Results
The mediation analyses indicated that out of all regions
within the PFC, gray matter thickness of only the left
inferior PFC (pars triangularis, Brodmann area 45) mediated
the relationship between phosphatidylcholine and cognitive
flexibility, corresponding with prior work that suggests an
influential role of this region. Each relationship within the
mediation is described below in a stepwise fashion.

First, higher phosphatidylcholine associated with greater
thickness of the left inferior PFC (β= 0.001, p= 0.007; Figures 1
and 2, path a). Second, higher phosphatidylcholine associated
with better cognitive flexibility (β = 0.002, p = 0.016, Figure 2,
path c). Third, the indirect pathway of meditation was significant
(95% CI: 0.001 – 0.002, β = 4.688, p = 0.047, Figure 2, path a–
b), but the direct pathway of mediation was insignificant (95%
CI: −0.002 – 0.003, β = 0.001, p = 0.089, Figure 2, path c’).
Therefore, the mediation indicated that gray matter thickness
of the left inferior PFC fully mediated the relationship between
phosphatidylcholine and cognitive flexibility (Figure 2).

DISCUSSION

This study revealed that gray matter thickness of the left
inferior PFC mediates the relationship between plasma
phosphatidylcholine and cognitive flexibility. The mediation

TABLE 1 | Characteristics of sample1.

Demographics Total n = 72

Age (mean years + standard deviation) 69 ± 3

Female, n(%) 46(64)

Education, n(%) 1(1) some high school

10(14) high school degree

12(17) some college

49(68) college degree

Income, n(%) 1(1) < $15,000

2(3) $15,000 – $25,000

12(17) $25,000 – $50,000

17(24) $50,000 – $75,000

16(22) $75,000 – $100,000

24(33) > $100,000

Depression, n(%) 67(93) no

5(7) yes

Plasma nutrients (uM ± std)

Phosphatidylcholine 2101 ± 400

Psychometrics (mean ± std)

Cognitive flexibility score 8 ± 2

Volumetric MRI (gray matter thickness) (mm± std))

Left PFC 2.39 ± 0.08

Left inferior PFC 2.38 ± 0.13

1Demographics reflect covariates included in analyses. Plasma nutrients,
psychometrics, and volumetric MRI reflect variables of interest included in analyses.
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FIGURE 1 | A linear regression model was used to characterize the
relationship between phosphatidylcholine levels and gray matter
thickness of regions in the PFC. Phosphatidylcholine levels positively
associated with gray matter thickness of the left inferior PFC (β = 0.001,
p = 0.007).

analysis provided a novel finding that links phosphatidylcholine
to gray matter integrity of a specific cortical region and a
particular component of the executive functions. The individual
relationships reported within the mediation, including those
between phosphatidylcholine levels and left inferior PFC
(Figure 2, path a), between phosphatidylcholine levels and
cognitive flexibility (Figure 2, path c), and between left inferior
PFC and cognitive flexibility (Figure 2, path b), are each
substantiated by prior findings reviewed in turn below.

The first relationship demonstrated a positive association
between higher phosphatidylcholine levels and greater thickness

in the inferior PFC of the left hemisphere (Figure 2, path a). Past
studies suggest that phosphatidylcholine plays a critical role in
age-related changes in cortical integrity, and the inferior PFC,
being a region that thins early in aging, may be particularly
susceptible to these effects (Söderberg et al., 1990; Wurtman,
2015). More specifically, phosphatidylcholine may contribute
to structure and function of the inferior PFC via cholinergic
projections, which enhance functional activity within this region
(Blusztajn et al., 1987; Berry et al., 2015). Second, higher
phosphatidylcholine levels are associated with better cognitive
flexibility (Figure 2, path c). Prior work demonstrates that higher
phosphatidylcholine levels are related to slower cognitive decline,
and components of phosphatidylcholine, including long-chain
polyunsaturated fatty acids, such as DHA, and choline, are linked
to superior performance on executive function tasks (Schaefer
et al., 2006; Beydoun et al., 2007; Bowman et al., 2012; Nurk
et al., 2013; Witte et al., 2013; Hartmann et al., 2014; Mapstone
et al., 2014; Naber et al., 2015; Zamroziewicz et al., 2015).
The indirect pathway of mediation indicated a mediatory effect
of left inferior PFC gray matter thickness on the relationship
between phosphatidylcholine levels and cognitive flexibility
(Figure 2, path a–b). Previous studies indicate that greater
gray matter thickness within the inferior PFC contributes to
superior cognitive flexibility, and that cholinergic transmissions,
originating, for example, from phosphatidylcholine-derived
choline, underlie activity within the inferior PFC during tasks of
cognitive control (Blusztajn et al., 1987; Burzynska et al., 2012;
Berry et al., 2015). The unilateral nature of this mediation is
supported by prior work, which suggests that regions within the
left hemisphere may be selectively susceptible to degeneration
and cognitive impairment (Chételat et al., 2005; Querbes et al.,
2009; Risacher et al., 2010; Mosconi et al., 2014).

FIGURE 2 | A mediation model was used to characterize the relationship between phosphatidylcholine levels, gray matter thickness of regions in the
PFC, and cognitive flexibility. Phosphatidylcholine levels positively associated with gray matter thickness of the left inferior PFC (path a). Phosphatidylcholine
levels positively associated with cognitive flexibility (path c). The indirect pathway of mediation (i.e., the effect of phosphatidylcholine levels through gray matter
thickness of the left inferior PFC on cognitive flexibility; path a–b) was statistically significant. The direct pathway of mediation (i.e., the effect of phosphatidylcholine
levels directly on cognitive flexibility, accounting for the effect of gray matter thickness of the left inferior PFC; path c’) was not statistically significant. Therefore, gray
matter thickness of the left inferior PFC fully mediated the relationship between phosphatidylcholine levels and cognitive flexibility.
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Prior work indicates that the underlying physiological
mechanisms of the relationship between phosphatidylcholine
levels, cognitive flexibility, and cortical integrity of the inferior
PFC may be threefold. First, phosphatidylcholine may help
slow or prevent age-related changes in cortical thickness by
delivering two molecules that are critical for cortical integrity,
including choline and long-chain polyunsaturated fatty acids
(Söderberg et al., 1990; Cohen et al., 1995; Zeisel, 2006;
Jerneren et al., 2015). Second, the delivery of long-chain
polyunsaturated fatty acids may help prevent inflammation
in the brain (Wall et al., 2010). Third, delivery of choline
contributes to acetylcholine synthesis, a neurotransmitter that
has been implicated in set-shifting performance and projects
to the inferior PFC via forebrain cholinergic transmissions
(Blusztajn et al., 1987; Hasselmo and Sarter, 2011; Berry et al.,
2015). Importantly, phosphatidylcholine-derived choline may be
a primary contributor to the brain choline pool when age-related
changes in brain choline uptake reduce extracellular choline
supplies (Zeisel, 2006). Future mechanistic studies are needed to
confirm underlying physiological mechanisms of the relationship
between phosphatidylcholine levels, cognitive flexibility, and
cortical integrity of the inferior PFC.

Research at the frontiers of nutritional cognitive neuroscience
seeks to integrate methods that sensitively capture variability
in nutritional intake, brain aging, and cognition, and in doing
so, elucidate the neural structures that mediate the relationship
between nutritional status and cognitive decline. This finding
contributes to a growing line of evidence which suggests that
particular nutrients may slow or prevent aspects of age-related
cognitive decline by influencing specific features of brain aging
(Bowman et al., 2012; Zamroziewicz et al., 2015; Gu et al.,
2016). In the case of phosphatidylcholine, future studies are
needed to assess the origins of plasma phosphatidylcholine, and
whether dietary intake or endogenous synthesis preferentially
contributes to the neuroprotective effect. Another promising
direction for future work is to examine the interactive effects
among nutrients through the use of nutrient biomarker pattern
analysis – a technique that enables an investigation of the
beneficial effects of broader nutrient profiles on healthy brain
aging. Ultimately, this line of research can inform clinical
investigations of comprehensive and personalized approaches to
nutritional intervention that takes into account dietary patterns
and individual variability in nutritional status and brain health.

The strengths of the present study include: (i) the use
of blood biomarkers to measure physiological status of

phosphatidylcholine, (ii) the use of structural magnetic resonance
imaging to measure regional cortical integrity with high spatial
resolution, and (iii) the assessment of a particular component of
cognitive function known to be sensitive to age-related cognitive
decline, rather than a global cognitive function measure with
little variability in healthy aging adults. Directions for future
research include (i) replication of results in a larger sample
size, (ii) implementation of a longitudinal study to examine
how changes in phosphatidylcholine levels relate to changes in
executive functions and integrity of the PFC, (iii) investigation
of the physiological mechanisms proposed to underlie the
relationship between phosphatidylcholine and PFC structure,
(iv) examination of relationship between phosphatidylcholine,
executive functions, and PFC integrity in other models, including
animal models and clinical populations, (v) elucidation of
the relationship between phosphatidylcholine in plasma and
cerebrospinal fluid, and (vi) examination of the origins of
phosphatidylcholine in blood, as plasma phosphatidylcholine
may be derived from the diet or de novo synthesis by
the phosphatidylethanolamine N-methyltransferase (PEMT)
pathway (Zeisel, 2006).
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