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Introduction: Accumulating evidence indicates that cognitive decline depends not only upon changes in
brain health, but critically, also upon nutritional status. Decline in fluid intelligence, one of the most
debilitating aspects of cognitive aging, has been linked to omega-3 polyunsaturated fatty acid (PUFA)
status; however, it is not known whether this phenomenon results from specific omega-3 PUFAs acting on
particular aspects of brain health. Therefore, this study aims to explore whether particular patterns of
omega-3 PUFAs influence fluid intelligence by supporting specific neural structures.
Methods:Wemeasured six plasma phospholipid omega-3 PUFAs, fluid intelligence, and regional gray matter
volume in the frontal and parietal cortices in 100 cognitively intact older adults (65–75 years old). A four-step
mediation analysis was implemented using principal component analysis and multivariate linear regressions,
adjusted for age, gender, education, and body mass index.
Results: The mediation analysis revealed that one pattern of omega-3 PUFAs, consisting of alpha-linolenic
acid, stearidonic acid, and eicosatrienoic acid, was linked to fluid intelligence, and that total gray matter
volume of the left frontoparietal cortex (FPC) fully mediated the relationship between this omega-3 PUFA
pattern and fluid intelligence.
Discussion: These data demonstrate that fluid intelligence may be optimally supported by specific omega-3
PUFAs through preservation of FPC gray matter structure in cognitively intact older adults. This report
provides novel evidence for the benefits of particular omega-3 PUFA patterns on fluid intelligence and
underlying gray matter structure.

Keywords: Nutrient biomarkers, Nutrient biomarker patterns, Cognitive performance, Cognitive aging, Cortical integrity, Brain aging, Nutritional cognitive
neuroscience

Introduction
Nutrition has increasingly been recognized for its
ability to help prevent and protect against disease,
and at the frontiers of this effort is research within
the emerging interdisciplinary field of Nutritional
Cognitive Neuroscience. This line of work demon-
strates that cognitive decline depends not only upon
changes in brain structure and brain function, but cri-
tically, also upon dietary intake and nutritional
status.1 As the United States experiences rapid

growth in the proportion of older adults, the search
for effective strategies to promote healthy brain
aging provides a catalyst for research to investigate
the beneficial effects of nutrition on the aging brain.
In the absence of neurodegenerative disease, decline

in fluid intelligence presents as one of the most debil-
itating aspects of cognitive aging.2 Fluid intelligence
refers to the intellectual abilities required for adaptive
problem solving in novel situations, and reflects the
capacity to creatively and flexibly grapple with the
world in ways that do not rely on prior knowledge.3

A fundamental issue in the study of cognitive aging
has historically been whether fluid intelligence can
be maintained in late adulthood.4 Indeed, recent
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evidence indicates that age-related decline in fluid
intelligence is mediated by nervous system health,
highlighting the potential for intervention by neuro-
protective nutrients.5

Increasing evidence suggests that omega-3 (n-3)
polyunsaturated fatty acids (PUFAs) benefit the
aging brain.6 PUFAs are known to contribute to
structural integrity of neuronal membranes, control
inflammation and oxidation, and promote energy
metabolism.7 Omega-3 PUFAs have been linked to
the preservation of cognitive functions vulnerable to
age-related decline, including fluid intelligence.8

However, it is not known which brain structures n-3
PUFAs may act upon to support fluid intelligence,
and whether particular patterns of n-3 PUFAs prefer-
entially provide support.
Fluid intelligence engages a distributed brain circuit

within the frontal and parietal cortex.9,10 Specifically,
fluid intelligence is linked to structural integrity and
neural activity within the lateral prefrontal and
posterior parietal cortices, regions cumulatively
referred to as the frontoparietal cortex (FPC).11,12

Importantly, n-3 PUFAs slow age-related structural
decline in the FPC,13,14 and in this way, could
prevent age-related decline in fluid intelligence. Thus,
the FPC plays a critical role in fluid intelligence and
is amenable to n-3 PUFAs, making it a target region
of interest for investigating the impact of n-3 PUFAs
on the cognitive and neural mechanisms of fluid
intelligence.
In summary, one of the most debilitating aspects of

cognitive aging, decline in fluid intelligence and
degeneration of the underlying FPC, may be amelio-
rated by n-3 PUFA intake. However, it is not known
whether particular patterns of n-3 PUFAs influence
core brain regions to support fluid intelligence.
Therefore, this study aims to (i) identify nutritional
biomarkers of fluid intelligence by empirically deriv-
ing patterns of n-3 PUFAs and (ii) distinguish the
neural structures that mediate the beneficial effect of
n-3 PUFAs on fluid intelligence.

Materials and methods
Study participants
This cross-sectional study enrolled 122 healthy elderly
adult patients from Carle Foundation Hospital, a local
and readily available cohort of well-characterized
elderly adults. No participants were cognitively
impaired, as defined by a score of lower than 26 on
the Mini-Mental State Examination.15 Participants
with a diagnosis of mild cognitive impairment, demen-
tia, psychiatric illness within the last 3 years, stroke
within the past 12 months, and cancer within the last
3 years were excluded. Participants were also excluded
for current chemotherapy or radiation, an inability to
complete study activities, prior involvement in

cognitive training or dietary intervention studies, and
contraindications for magnetic resonance imaging
(MRI). All participants were right handed with
normal, or corrected to normal vision and no contra-
indication for MRI. Of these 122 participants, 22 par-
ticipants did not have a complete dataset, which
included neuropsychological testing, MRI, and
blood biomarker analysis. Therefore, 100 participants
were considered in the current analysis.

Standard protocol approval and participant
consent
This study was approved by the University of Illinois
Institutional Review Board and the Carle Hospital
Institutional Review Board and, in accordance with
the stated guidelines, all participants read and signed
informed consent documents.

Biomarker acquisition and analysis
Plasma lipids were extracted by the method of Folch
et al.16 Briefly, the internal standard (25 μg each of
PC17:0) was added to 200 μl of serum, followed by
6 ml of choloroform:methanol:BHT (2:1:100 v/v/w).
The protein precipitate was removed by centrifugation
(2500 g, 5 minutes, 4°C). Then 1.5 ml of 0.88% KCl
was added to the supernatant, shaken vigorously and
the layers were allowed to settle for 5 minutes. The
upper layer was discarded and 1 ml of distilled water:
methanol (1:1 v/v) was added, the tube was shaken
again and the layers were allowed to settle for 15
minutes. The lower layer was transferred into a clean
tube and evaporated to dryness under nitrogen. The
phospholipid subfraction was separated by solid-
phase extraction using aminopropyl columns, as
described by Aryen et al.17 Then the phospholipid
fraction was methylated by adding 2 ml of 14% BF3-
MeOH and incubating at 95°C for 1 hour.18 The
supernatant containing the fatty acid methyl esters
(FAMEs) was dried down under nitrogen, resuspended
in 100 μl of hexane, transferred into amber GC vials,
and stored at −20°C until the time of analysis.

The phospholipid FAMEs were analyzed by a
CLARUS 650 gas chromatograph (Perkin Elmer,
Boston, MA, USA) equipped with a 100 m ×
0.25 mm i.d. (film thickness 0.25 µm) capillary
column (SP-2560, Supelco). Injector and flame ioniz-
ation detector temperatures were 250 and 260°C,
respectively. Helium was used as the carrier gas
(2.5 ml/min) and the split ratio was 14:1. The oven
temperature was programed at 80°C, held for 16
minutes and then increased to 180°C at a rate of
5°C/minute. After 10 minutes, the temperature was
increased to 192°C at a rate of 0.5°C/minute, and
held for 4 minutes. The final temperature was 250°C
reached at a rate of 405°C/minute and held for 15
minutes. Peaks of interest were identified by
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comparison with authentic fatty acid standards (Nu-
Chek Prep, Inc., Waterville, MN, USA) and expressed
as absolute concentration (μmol/l). The plasma phos-
pholipid lipids of interest were n-3 PUFAs, including
α-linolenic acid (ALA, 18:3n-3), stearidonic acid
(SDA, 18:4n-3), eicosatrienoic acid (20:3n-3, ETE),
eicosapentaenoic acid (EPA, 20:5n-3), docosapentae-
noic acid (DPA, 22:5n-3), and docosahexaenoic acid
(DHA, 22:6n-3).

Nutrient biomarker pattern analysis of PUFAs
Nutrient biomarker pattern (NBP) analysis was con-
ducted in the IBM SPSS statistical software, version
24 for Macintosh. Principal component analysis was
used to identify NBPs from the six n-3 PUFAs of inter-
est. Of these, five n-3 PUFAs (ALA, ETE, EPA, DPA,
and DHA) were non-normally distributed as indicated
by Shapiro–Wilk test (all P-values < 0.05), and there-
fore log-transformed to correct for skewness of vari-
ables and subsequently considered in the analysis.
The appropriate rotation method was determined by
examining the factor correlation matrix: varimax
rotation was chosen for a correlation matrix with
values less than 0.32 and direct oblimin rotation was
chosen for a correlation matrix with values greater
than 0.32.19 Statistical validity of the factor analysis
was confirmed via the Kaiser–Meyer–Olkin measure
of sampling adequacy (≥0.50)20 and Bartlett’s test of
sphericity (P< 0.05).21 The number of NBPs to be
retained was determined by a combination of eigen-
values greater than 1.0, variance accounted for by
each component, and scree plot inflection point.
Interpretation of each factor was based on identifying
biomarkers with an absolute loading value of greater
than 0.50 on an NBP (i.e. identifying the dominant
biomarkers contributing to each particular NBP).
Each participant received a standardized NBP score
for each pattern that corresponded to a linear combi-
nation of the nutrient biomarkers.

Neuropsychological tests
Fluid intelligence was measured by the Wechsler
Abbreviated Scale of Intelligence – second edition
(WASI-II).22 This assessment measured fluid intelli-
gence by way of a perceptual reasoning index, which
was the product of two subtests: a block design
subtest and a matrix reasoning subtest. In the block
design subtest, participants were asked to reproduce
pictured designs using specifically designed blocks as
quickly and accurately as possible. In the matrix
reasoning subtest, participants were asked to complete
a matrix or serial reasoning problem by selecting the
missing section from five response items. Subjects’
raw scores were converted to normalized scaled
scores and subsequently combined into a perceptual

reasoning index, which provided a measure of nonver-
bal reasoning and fluid intelligence.

Volumetric brain MRI
Volumetric analysis was performed on data from a 3D
high-resolution T1-weighted scan using MPRAGE
acquisition (0.9 mm isotropic voxel; TR: 1900 ms,
TI: 900 ms, TE: 2.32 ms, with GRAPPA and an accel-
eration factor of 2). Cortical reconstruction was per-
formed with the Freesurfer image analysis suite,
which is documented and freely available for down-
load online (http://surfer.nmr.mgh.harvard.edu/).
The technical details of these procedures are described
in prior publications.23–35 All cortical reconstructions
were manually checked for accuracy, as recommended
by the software developers. The volumetric analyses
focused on gray matter volume in the FPC, given the
role of this cortical region in fluid intelligence11,12

and its sensitivity to n-3 PUFAs.13,14 As provided by
Freesurfer parcellation, the FPC consisted of the fol-
lowing regions of interest: superior frontal cortex,
rostral middle frontal cortex, caudal middle frontal
cortex, pars opercularis, pars triangularis, pars orbita-
lis, superior parietal cortex, supramarginal cortex, and
precuneus.36,37 The volumetric analyses took into con-
sideration total gray matter volume of the FPC as well
as gray matter volume of individual regions within the
FPC.

Covariates
Covariates were included according to the previous
association with cognitive decline.38–43 The covariates
included age (continuous), gender (nominal, man/
woman), education (nominal, five fixed levels), and
body mass index (continuous). Volumetric analyses
of the total FPC additionally accounted for intracra-
nial volume (continuous), and volumetric analyses of
individual regions within the FPC additionally
accounted for total FPC volume (continuous) in an
effort to isolate the contribution of each individual
region.

Statistical analysis
A formal mediation framework was applied to: (i)
identify predictive nutritional biomarkers of fluid
intelligence, as derived by NBP analysis, and (ii) dis-
tinguish the neural structures that mediate the ben-
eficial effect of n-3 PUFA patterns on fluid
intelligence. First, regression models characterized
the three relationships within the mediation frame-
work: (i) the relationship between NBPs and fluid
intelligence, (ii) the relationship between gray matter
volume within the FPC and fluid intelligence, and
(iii) the relationship between NBPs and gray matter
volume within the FPC. Second, taking into account
results of the regression analyses, a mediation model
assessed whether gray matter volume within the FPC
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mediated the relationship between NBPs and fluid
intelligence (Fig. 1). Statistics were performed as
follows:
(1) In the first step, one linear regression model was used

to characterize the relationship between NBPs and
fluid intelligence (Fig. 3 path a). This analysis
accounted for covariates listed in Covariates. The
results of this regression model indicated independent
variables for consideration in the mediation model.

(2) In the second step, linear regression models were
applied to characterize the relationship between
each gray matter volume within the FPC, including
total FPC volume and volume of individual regions
within the FPC, and fluid intelligence (Fig. 3 path
c). This analysis accounted for covariates listed in
Covariates and applied a false discovery rate
(FDR) correction for multiple comparisons (q<
0.05, one-tailed).44 The results of these regression
models indicated mediatory variables for consider-
ation in the mediation model.

(3) In the third step, linear regression models were used
to characterize the relationship between NBPs and
each gray matter volume within the FPC, including
total FPC volume and volume of individual regions
within the FPC (Fig. 3 path b). This analysis
accounted for covariates listed in Covariates and
applied an FDR correction for multiple compari-
sons (q< 0.05, one-tailed).44 The results of these
regression models further specified mediatory vari-
ables for consideration in the mediation model.

(4) In the fourth step, the PROCESS macro designed
for SPSS was applied to implement the bootstrap-
ping method to estimate mediation effects.45 This
analysis drew 1000 bootstrapped samples with repla-
cement from the dataset to estimate a sampling dis-
tribution for indirect and direct mediation effects,
controlling for covariates listed in Covariates. The
indirect mediation effect refers to the pathway
from NBPs to gray matter volume within the FPC
to fluid intelligence (Fig. 3 paths b–c). The direct
mediation effect refers to the direct pathway from
NBPs to fluid intelligence, accounting for the
effect of gray matter volume within the FPC
(Fig. 3 path a′). As shown in Fig. 1, the primary
requirement for mediation is a significant indirect

mediation effect, or the effect of the independent
variable (NBPs) through the mediator (gray matter
volume within the FPC) on the dependent variable
(fluid intelligence).46 To further validate the pro-
posed mediation model, an alternative mediation
model, incorporating FPC as the independent vari-
able, NBPs as the mediating variable, and fluid
intelligence as the dependent variable, was also
tested.

Results are reported using (i) R2 and P for each
model, (ii) unstandardized regression coefficients (β),
unstandardized regression coefficient standard error
(SE β), and P of each individual regression relation-
ship, and (iii) a 95% bias-corrected confidence interval
(95% CI) for the direct and indirect effects of the
mediation. Significance was accepted at P≤ 0.05. A
statistically significant mediation that matches the
hypothesized framework is indicated by: (i) an indirect
mediation effect that does not include zero within 95%
CI, and (ii) a direct mediation effect that does include
zero within 95% CI.46

Results
Participant characteristics
Participants (n= 100) had a mean age of 69 years and
62% of participants were females (n= 62). All other
participant characteristics are reported in Table 1.

Nutrient biomarker patterns
Principal component analysis generated two NBPs
(Table 2). The factor correlation matrix contained
values greater than 0.32; therefore, direct oblimin
rotation was implemented. Statistical validity of the
factor analyses was confirmed via the Kaiser–Meyer–
Olkin measure of sampling adequacy (0.728) and
Bartlett’s test of sphericity (P< 0.001). Two NBPs
were selected for retention because (i) after the
second NBP extraction with principal component
analysis, 71.8% of the total variance was accounted
for in the original set of nutrient biomarkers, and (ii)
inspection of the scree plot indicated that the inflection
point occurred after the second NBP (Fig. 2).
Hereafter, the first NBP is described as product n-3
PUFAs (i.e. it is composed of downstream n-3
PUFAs, including EPA, DPA n-3, and DHA), and
the second NBP is described as precursor n-3
PUFAs (i.e. it is composed of three n-3 PUFAs that
serve as precursors to EPA and DHA).

Nutrient biomarker patterns, fluid intelligence,
and gray matter volume with the FPC
The mediation analyses indicated that fluid intelli-
gence was linked to precursor n-3 PUFAs as well as
total gray matter volume within the FPC, and further-
more, that total gray matter volume of the left FPC
fully mediated the relationship between precursor n-3

Figure 1 Proposed mediation model. the primary
requirement for mediation is a significant indirect mediation
effect, defined as the effect of the independent variable
(NBPs) through the mediator (gray matter volume within the
FPC) on the dependent variable (fluid intelligence).
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PUFAs and fluid intelligence. Each relationship within
the mediation is described below in a stepwise fashion:
(1) Better fluid intelligence was predicted by higher pre-

cursor n-3 PUFAs (R2
model= 0.133, Pmodel= 0.035;

β= 3.236, SE β= 1.544, Pvariable= 0.039), but not
higher product n-3 PUFAs (Table 3). Therefore, pre-
cursor n-3 PUFAs were considered as a candidate
independent variable in the mediation model
(Fig. 3 path a).

(2) Better fluid intelligence was predicted by larger
volume of the left FPC (R2

model= 0.181, Pmodel=
0.004; β= 0.001, SE β< 0.001, Pvariable= 0.009)
and smaller volume of the right supramarginal
cortex (R2

model= 0.220, Pmodel= 0.001; β=−0.004,
SE β= 0.001, Pvariable= 0.006), but no other region
of the FPC (Table 4). Therefore, left FPC and right

supramarginal cortex were considered as candidate
mediators in the mediation model (Fig. 3 path c).

(3) Higher precursor n-3 PUFAs also predicted larger
volume of the left FPC (R2

model= 0.641, Pmodel<
0.001; β= 1494.073, SE β= 557.356, Pvariable=
0.009), but no other region of the FPC (Table 5).
Therefore, only left FPC was retained as a candidate
mediator in the mediation model (Fig. 3 path b).

(4) The mediation model investigating the mediatory
effect of the left FPC on the relationship between
precursor n-3 PUFAs and fluid intelligence indi-
cated a full mediation (R2

model= 0.30, Pmodel=
0.001). The indirect pathway of mediation was sig-
nificant (95% CI [0.178–2.741], Fig. 3 path b–c;
β= 0.007, SE β= 0.0003, Pvariable= 0.007, Fig. 3
path c). However, the direct pathway of mediation
was not significant (95% CI [−1.573–4.023], β=
1.225, SE β= 1.408, Pvariable= 0.387, Fig. 3 path
a′). Therefore, the mediation indicated that gray
matter volume of the left FPC fully mediated the
relationship between precursor n-3 PUFAs and
fluid intelligence (Fig. 3). Examination of an
alternative mediation model, which incorporated
FPC as the independent variable, NBPs as the med-
iating variable, and fluid intelligence as the depen-
dent variable, yielded an insignificant indirect
effect (95% CI [−0.0001–0.0003]) and significant
direct effect (95% [0.0002–0.0013]). The alternative
mediation model did not present a statistically
sound mediation approach and therefore confirmed
the validity of the primary proposed mediation
model.

Discussion
This study revealed fluid intelligence is predicted by
specific n-3 PUFA patterns and FPC structure, and
that FPC structure mediates the relationship between
n-3 PUFA status and fluid intelligence. This report
identifies a novel nutritional biomarker for fluid

Table 1 Characteristics of sample

Demographics n = 100

Age in years (M± SD) 69± 3
Female (%) 62
Education (%)

Some high school 1
High school degree 11
Some college 18
College degree 70

Income (%)
<$15 000 1
$15 000–$25 000 4
$25 000–$50 000 15
$50 000–$75 000 23
$75 000–$100 000 26
>$100 000 31

Body mass index (M± SD) 26± 4
Depression indicated (%) 6
Plasma phospholipid nutrients (M± SD, μmol/l)

ALA (18:3n-3) 5.2± 2.7
SDA (18:4n-3) 2.4± 0.9
ETE (20:3n-3) 1.2± 0.5
EPA (20:5n-3) 25.0± 17.8
DPA (22:5n-3) 23.0± 7.1
DHA (22:6n-3) 79.6± 33.4

Psychometrics (M± SD)
Fluid intelligence score 112± 14

Volumetric MRI (gray matter volume) (M± SD, mm3)
Intracranial volume 1447671.9± 149653.5
FPC (R, L) 80184.6± 7766,

80627.4± 7765.7
Superior frontal cortex (R, L) 19403.7± 2220.8,

19995.9± 2111.2
Rostral middle frontal cortex (R, L) 14689.5± 2047.5,

14219.0± 1840.3
Caudal middle frontal cortex (R,L) 5455.2± 983.8,

5807.3± 992.2
Pars opercularis cortex (R, L) 3599.5± 549.6,

4275.3± 634.9
Pars triangularis cortex (R, L) 3774.7± 628.5,

3265.1± 480.4
Pars orbitalis cortex (R, L) 2430.2± 347.5,

2040.5± 270.5
Superior parietal cortex (R, L) 12389.2± 1538.2,

12243.7± 1320.2
Precuneus cortex (R, L) 9060.8± 1067.2,

8718.7± 1082.4
Supramarginal cortex (R, L) 9381.8± 1383.2,

10062.0± 1519.4

Mean (M), standard deviation (SD), right hemisphere (R), left
hemisphere (L).

Table 2 NBP construction: pattern structure and variance
explaineda

Plasma phospholipid fatty acid
NBPb

1 2

ALA (18:3n-3) 0.190 0.742*
SDA (18:4n-3) 0.065 0.715*
ETE (20:3n-3) −0.131 0.827*
EPA (20:5n-3) 0.960* −0.053
DPA (22:5n-3) 0.805* 0.143
DHA (22:6n-3) 0.902* −0.028
Percent variance explained by each NBP 52.781 18.989
Cumulative percent variance explained

with each extraction
52.781 71.770

Nutrient biomarker pattern, NBP.
aExtraction method: principal component analysis; rotation
method: oblimin.
bNBP interpretation based on strongest loading coefficients
within each pattern.
*Nutrients with absolute loadings ≥0.5 that are considered as
dominant nutrients contributing to the particular nutrient pattern.
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intelligence as well as a novel mediatory relationship
between n-3 PUFAs, FPC structure, and fluid intelli-
gence. The individual relationships reported within
the mediation, including those between n-3 PUFAs
and fluid intelligence (Fig. 3 path a), between FPC
and fluid intelligence (Fig. 3 path c), and between n-
3 PUFAs and FPC (Fig. 3 path b), are each supported
by previous work reviewed in turn below.
First, precursor n-3 PUFAs positively associated

with fluid intelligence. Red blood cell phospholipid
total n-3 PUFAs have been previously linked to intel-
ligence in older adults.47 More specifically, serum con-
centration of EPA, DPA n-3, and DHA has been
linked to better performance on tests of frontal func-
tion in older adults8,48; however, to our knowledge,

no studyhas examined the effects ofALAor its immedi-
ate downstream products, including SDA and ETE, on
intelligence or tests of frontal function in older adults.
Importantly, ALA in serum,49 red blood cell phospho-
lipids,50 andplasma51 has been linked to risk for demen-
tia. Decline in fluid intelligence is a key feature of the
cognitive changes that precede dementia,2 thus ALA
and its immediate downstream products, including
SDA and ETE, could serve as predictive biomarkers
for fluid intelligence.

Second, structural integrity of the FPC was linked
to fluid intelligence. More specifically, gray matter
volume of the left FPC positively predicted fluid intel-
ligence. Evidence indicates that fluid intelligence relies
on the structure and function of regions within the
FPC.9,10,12 The unilateral effect is supported by
prior work, which suggests that regions within the
left hemisphere may be selectively susceptible to
degeneration.52 Conversely, gray matter volume of
the right supramarginal cortex negatively predicted
fluid intelligence. Although the supramarginal
cortex is considered part of the FPC,36,37 neural
activity in this region decreases during tests of intelli-
gence.53 In line with prior evidence, our results
suggest that while the supramarginal cortex may con-
tribute to the FPC as a whole, its individual contri-
butions to intelligence are not congruent to that of
the entire FPC.

Figure 2 Scree plot. inspection of the scree plot indicated that the inflection point occurred after the second component, or
NBP, was extracted using a direct oblimin rotation.

Table 3 Linear regression models: n-3 PUFA patterns
associated with fluid intelligence

NBP Fluid intelligence
Model 1a

NBP1 β −0.645
SE 1.604

NBP2 β 3.236*
SE 1.544

Model R2 0.133*

Nutrient biomarker pattern, NBP.
aModel: fluid intelligence=NBP1+NBP2+ age+ gender+
education+ body mass index.
*P< 0.05, **P< 0.01, ***P< 0.001.
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Third, precursor n-3 PUFAs positively predicted
structural integrity of the left FPC. Higher red blood
cell levels of DHA,8 combined EPA and DHA,54

and ALA55 have been linked to greater total brain

volume and markers of reduced brain atrophy. In
addition, supplementation of EPA and DHA increases
gray matter volume in the frontal and parietal cortices
of the left hemisphere in healthy, older adults.14

However, to our knowledge, no study has examined
the effects of ALA or its immediate downstream pro-
ducts, including SDA and ETE, on FPC gray matter
structure.
Lastly, gray matter volume of the left FPC fully

mediated the relationship between precursor n-3
PUFAs and fluid intelligence. Thus, precursor n-3
PUFAs may influence fluid intelligence by promoting
structural integrity of the left FPC. Each of the three
relationships within the mediation is supported by
prior findings, described above, but the mediation
analysis provides a novel link between particular n-3
PUFAs, a cognitive function that is particularly vul-
nerable to age-related decline, and an underlying neu-
roanatomical network. These findings contribute to
accumulating evidence, suggesting that certain nutri-
ents may slow or prevent aspects of age-related cogni-
tive decline by influencing particular aspects of brain
structure.1,56–61

The predictive power of one NBP, the precursor n-3
PUFA pattern, has noteworthy implications for the
neuroprotective potential of n-3 PUFAs on fluid intel-
ligence. The precursor n-3 PUFA pattern is reflective
of either metabolic processing of n-3 PUFAs or
dietary intake of n-3 PUFA-rich oils, nuts, and
seeds.62,63 Metabolic processing of n-3 PUFAs within
the precursor n-3 PUFA pattern may be neuroprotec-
tive because ALA, SDA, and ETE are converted to
EPA, and to a smaller extent, DHA. Although DHA
is the most abundant long-chain n-3 PUFA in the

Figure 3 Mediation model statistics. a mediation model was used to characterize the relationship between NBP2, left FPC gray
matter volume, and fluid intelligence. NBP2 positively associated with fluid intelligence (path a). NBP2 positively associated with
total gray matter volume of the left FPC (path b). The indirect pathway of mediation (i.e. the effect of NBP2 through total gray
matter volume of the left FPCon fluid intelligence; paths b–c) was statistically significant. The direct pathway of mediation (i.e. the
effect of NBP2 on fluid intelligence, accounting for total gray matter volume of the left FPC; path a′) was not significant.
Therefore, total gray matter volume of left FPC fully mediated the relationship between NBP2 and fluid intelligence.

Table 4 Linear regression models: gray matter regions
associated with fluid intelligence

Region Hemisphere

Fluid intelligence

β β SE
Model
R2

FPC Lefta 0.001**# <0.001**# 0.181**
Righta 0.001 <0.001 0.153*

Superior frontal Leftb −0.001 0.001 0.179**
Rightc 0.001 0.001 0.165**

Rostral middle
frontal

Leftb <0.001 0.001 0.178**
Rightc <0.001 0.001 0.153*

Caudal middle
frontal

Leftb 0.001 0.002 0.179**
Rightc <0.001 0.002 0.153*

Pars opercularis Leftb 0.002 0.002 0.184**
Rightc 0.003 0.003 0.159*

Pars triangularis Leftb 0.003 0.003 0.187**
Rightc 0.001 0.003 0.154*

Pars orbitalis Leftb −0.007 0.006 0.190**
Rightc 0.004 0.005 0.160*

Superior parietal Leftb <0.001 0.002 0.178**
Rightc 0.001 0.001 0.154*

Precuneus Leftb −0.001 0.002 0.180**
Rightc 0.001 0.002 0.156*

Supramarginal Leftb <0.001 0.002 0.178**
Rightc −0.004**# 0.001**# 0.220**

Frontoparietal cortex, FPC.
aModel: fluid intelligence= regional gray matter volume+ age+
gender+ education+ body mass index+ intracranial volume.
bModel: gray matter volume= regional gray matter volume+
age+ gender+ education+ body mass index+ left FPC
volume.
cModel: gray matter volume= regional gray matter volume+
age+ gender+ education+ body mass index+ right FPC
volume.
*P< 0.05, **P< 0.01, ***P< 0.001, #P< 0.05, FDR-corrected.
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brain,64 but both EPA and DHA have physiological
effects that can improve brain health. These include
reducing inflammation, reducing oxidative stress,
reducing platelet aggregation, improving blood
pressure, and improving arterial compliance.65

Alternatively, dietary consumption of precursor n-3
PUFAs may support neuronal health through the
unique neuroprotective benefits of ALA and its
immediate downstream products. Previous work has
shown that phospholipid ALA may prevent brain
atrophy55 by providing glucose to the brain through
efficient ketogenesis,66 increasing serotonin and dopa-
minergic neurotransmission in the frontal cortex,67

and increasing plasma levels of brain-derived neuro-
trophic factor, thereby indirectly promoting neurogen-
esis and neuronal survival.68 Importantly, few studies
have investigated the neuroprotective potential of n-3
PUFAs within the precursor n-3 PUFA pattern, and
even fewer have derived empirical patterns of plasma
phospholipid n-3 PUFAs. The methodology employed
in the current study allowed for an unprecedented
comprehensive assessment of nutritional status of n-3
PUFAs, and provided support for novel nutritional
biomarkers of fluid intelligence and underlying corti-
cal structure. Future mechanistic studies are needed
to investigate whether precursor n-3 PUFAs are neuro-
protective by way of conversion to EPA and DHA
or whether these precursors possess unique neuro-
protective benefits, as well as the endogenous and
exogenous factors that contribute to the neuropro-
tective effects. Future longitudinal studies are also

warranted to investigate the time scale on which
precursor n-3 PUFAs influence fluid intelligence
and underlying cortical structure. While measure-
ment of n-3 PUFAs in plasma phospholipids
reveals that short-term intake of these nutrients
influences cognition and brain health, measurement
of n-3 PUFAs in adipose tissue will indicate the
neuroprotective effects of long-term n-3 PUFA
intake.69

The strengths of this study include: (i) the use of
blood biomarkers to measure physiological status of
n-3 PUFAs, (ii) the use of NBP analysis to empirically
derive patterns of n-3 PUFAs, (iii) the use of structural
MRI to measure cortical integrity with high spatial
resolution, and (iv) the assessment of a particular cog-
nitive function that is known to be sensitive to age-
related decline, rather than a global measure of cogni-
tive function that presents with little variability in
healthy aging adults. The limitations of this study
include: (i) relatively small sample size (n= 100), (ii)
cross-sectional design, (iii) limited neuropsychological
testing (i.e. only fluid intelligence), (iv) limited neuroi-
maging domains (i.e. only structural neuroimaging),
(v) inability to explore mechanisms that support the
relationship between precursor n-3 PUFAs and FPC
structure, (vi) inability to explore contributions of
diet and metabolic processes to n-3 PUFA patterns,
and (vii) isolation of a specific dietary component.
Thus, directions for future research include: (i) replica-
tion of results in a larger sample, (ii) implementation
of a longitudinal study to examine how changes in

Table 5 Linear regression models: n-3 PUFA patterns associated with gray matter structure of the frontoparietal cortex

Region Hemisphere

NBP1 NBP2

β β SE β β SE Model R2

FPC Lefta −389.183 580.267 1494.073**# 557.356**# 0.641***
Righta −508.141 560.816 1424.340* 538.816* 0.673***

Superior frontal Leftb −44.492 129.989 −213.372 128.783 0.754***
Rightc −238.769 131.753 34.029 130.181 0.772***

Rostral middle frontal Leftb 107.278 125.255 12.413 124.093 0.700***
Rightc 82.595 153.719 −15.483 151.885 0.634***

Caudal middle frontal Leftb −165.806 95.989 53.767 95.098 0.393***
Rightc 9.079 96.967 1.954 95.810 0.370***

Pars opercularis Leftb 23.717 67.597 59.900 66.970 0.265***
Rightc 83.108 53.686 15.063 53.046 0.381***

Pars triangularis Leftb 90.942 47.264 9.672 46.826 0.372***
Rightc 79.649 64.295 −37.704 63.528 0.321***

Pars orbitalis Leftb 15.187 28.148 −21.612 27.887 0.298***
Rightc 46.995 35.625 −27.554 35.200 0.318***

Superior parietal Leftb 102.797 92.112 56.757 91.257 0.684***
Rightc 42.707 122.006 −10.367 120.550 0.592***

Precuneus Leftb −172.987 73.955 −91.045 73.269 0.697***
Rightc −118.534 80.577 −6.624 79.616 0.630***

Supramarginal Leftb 43.363 103.833 133.520 102.870 0.697***
Rightc 13.211 121.662 46.687 120.211 0.498***

Nutrient biomarker pattern, NBP; frontoparietal cortex, FPC.
aModel: gray matter volume=NBP1+NBP2+ age+ gender+ education+ body mass index+ intracranial volume.
bModel: gray matter volume=NBP1+NBP2+ age+ gender+ education+ body mass index+ left FPC volume.
cModel: gray matter volume=NBP1+NBP2+ age+ gender+ education+ body mass index+ right FPC volume.
*P< 0.05, **P< 0.01, ***P< 0.001, #P< 0.05, FDR-corrected.
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n-3 PUFAs relate to changes in fluid intelligence and
integrity of the FPC, (iii) examination of other facets
of cognitive function, (iv) investigation of other neu-
roimaging domains, such as white matter microstruc-
ture and functional activity, (v) examination of the
mechanisms that support the relationship between pre-
cursor n-3 PUFAs and FPC structure, (vi) investi-
gation of the relative contributions of diet and
metabolic processes to n-3 PUFA patterns, (vii) exam-
ination of potential synergistic interactions between n-
3 PUFAs and other known neuroprotective dietary
components, such as antioxidant vitamins (i.e. caro-
tenoids, vitamin E), that may reduce oxidation of
ingested fatty acids and therefore optimize neuropro-
tective effects.
Research at the frontline of Nutritional Cognitive

Neuroscience suggests that certain nutrients may
slow or prevent aspects of age-related cognitive
decline by influencing particular age-related changes
in brain structure.1,56–61 The present finding contrib-
utes to this research program, and provides a novel
link between nutritional and neuroanatomical bio-
markers for fluid intelligence in healthy, older
adults. Ultimately, this line of work can inform clini-
cal studies of personalized and comprehensive
approaches to nutritional intervention for healthy
brain aging.
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