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[Alice] was quite surprised to find that she remained the same size: to be sure, this is generally 
what happens when one eats cake, but Alice had got so much into the way of expecting nothing 
but out-of-the-way things to happen, that it seemed quite dull and stupid for life to go on in the 
common way. 
 

- Alice’s Adventures in Wonderland (Carroll, 1869) 

1. Introduction 

Early in Lewis Carroll’s first novella following Alice’s journey through Wonderland, the 

titular character found herself musing about the nature of causal relations, trying to explain and 

predict events based on the curious ties that connect events in a world seemingly unbound by the 

usual rules of possibility. She correctly attributed her mysteriously shrinking to the fact that she 

drank a potion marked “drink me,” and then correctly predicted that eating cake marked “eat me” 

might change her size yet again. Even in fiction, when the lines between possible and impossible 

can be flexed to resemble nothing like those in reality, human thought is still constrained by 

characteristic patterns of induction and reasoning; anything else ceases to be human thought as it 

is usually framed in cognitive psychology. 

Similarly, the beliefs of real people can be just as far from ground truth as Alice’s, but 

they are still constrained by a set of processes in the mind that are implemented in the brain to 

support beliefs and goal-directed behavior. Just like Alice – who was surprised by her shrinkage 

before attributing it to the one novel event immediately preceding it – people typically attribute 

their physical maladies to novel events and behaviors that break from usual habits. Anecdotes 

abound of people who can no longer tolerate a specific brand or type of alcohol after a 

particularly painful hangover; operant conditioning processes may explain the physical aversion, 

but causal reasoning is required to make sense of it, explaining previous hangovers and taking 

action to prevent them in the future. 
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However, causal judgment often requires more than identifying novel events that occur 

together, especially in the complicated world we inhabit, where multiple variables interact with 

one another to cause or enable some events while preventing others. Statistical patterns of co-

occurrence can be probed to correctly infer causality in many cases. Alice’s dramatic growth in 

Wonderland would have been neither remarkable nor attributable to the magic potion if she had 

only grown slowly over the course of the next ten years; the base rate of normal growth in 

children is on the order of several centimeters per year, and would have been expected even 

without the potion. This is the basis of the probabilistic contrast models of causal judgment: a 

given relation’s causal power is the difference between the probability of seeing an effect in the 

presence of its purported cause, and the probability of seeing that effect without the cause, 

separately accounting for the base rates of the events in question (Cheng & Novick, 1990; see 

Cheng, 1997 for further discussion and criticism of probabilistic contrast in the “Power PC 

Model”).  

The aim of this chapter is to discuss causal reasoning from a perspective grounded in 

neuroscience. Causal reasoning can be studied in the abstract, as a guideline for how to rationally 

form beliefs and update them, but it can also be studied “in the wild,” as it is practiced in the 

sciences and in daily life, and with attention to the brain and its causality-perceiving mechanisms 

that result from millions of years of natural selection for more successfully surviving and 

reproducing systems. Far from only an abstraction of statistics and mathematics, causal 

reasoning is all around us; it is in essence what field epidemiologists do to explain outbreaks of 

illness and predict their trajectories in a population; they look at patterns of dependency between 

events. To explain an individual person’s cough, for example, there may be multiple possible 

causes under consideration: a common cold virus, lung cancer, or heartburn (see (Tenenbaum et 
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al., 2011) for this example). The probability of having a cough when experiencing each of those 

conditions is called its likelihood, and the likelihood of a cough is much higher with a virus or 

lung cancer than it is for heartburn. The probability of each hypothesis being true before seeing 

any evidence of it is called its prior probability, and the prior for cold viruses and heartburn is 

much higher than that for lung cancer. Considering all three hypotheses using Bayes’ Theorem 

(using both prior probability and likelihood) then favors the cold virus as the most likely causal 

explanation for having a cough. Even physicians well-trained in medical diagnostics, however, 

are prone to ignoring the base rates of rare events when judging whether a positive test result is 

more likely to be due to disease or an error in testing (Krynski & Tenenbaum, 2007). Although 

people may possess the raw information processing power to calculate prior and posterior 

probabilities when instructed how to do so, there is clearly another, more intuitive, set of mental 

processes available to those who are untrained in statistics and logic. Although they can also lead 

to errors in belief, intuitive causal judgment processes are far from a flawed way of thinking 

about the world, especially when patterns of co-occurrence are inadequate to mentally separate 

causes from their effects. Without complete knowledge of all possible causal factors that could 

be operating in the background, the probabilistic contrast and other statistical theories of causal 

judgment are unable to differentiate causes from events that simply co-occur due to a third causal 

factor. They are also unable to account for the fact that people make causal judgments about 

events never seen before, and then use those judgments in subsequent reasoning without any 

possible knowledge of base rates or patterns of co-dependency. 

To understand our collective places in the world as both objects and effectors of change, 

it is necessary to recognize the generative mechanisms linking events that occur in a particular 

sequence. To then behave in a goal-directed manner (pursuing some ends and avoiding others), it 
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is also necessary to use and manipulate such knowledge and beliefs about the generative 

mechanisms that have already been inferred. By mentally representing the world as it is, while 

also imagining the world as it is not, we are able to integrate new and surprising information with 

the entirety of our prior experiences to explain the past and predict the future. In other words, we 

create new knowledge by combining and manipulating prior knowledge. This is the basis of 

reasoning and judgment. 

A remarkable body of work in the cognitive sciences has been devoted to modeling the 

reasoning process at the behavioral level. Competing models of “rational” or “normative” 

reasoning describe different ways to make judgments and combine beliefs to generate new ones, 

and they are typically evaluated for their ability to converge with the solutions generated by the 

norms of probability theory. Cognitive psychologists have also developed “descriptive” models 

of reasoning that purport to characterize how lay people actually reason, irrespective of whether 

that involves converging with theoretical norms.  

Strong programs of research are devoted to the study of both sorts of reasoning models in 

cognitive science and psychology without appealing to the knowledge or assumptions of 

neuroscience. Rationality and human thought are conceptually self-contained; that is, rationality 

can be studied using our assumptions on the nature of truth and the rules of formal logic, and 

human thought can be probed by asking people to solve reasoning problems and asking them 

what they believe, without ever trying the separate the brain from the behavior or asking how the 

brain is operating in the background. Beyond demonstrating that the human mind is a 

manifestation of the structure and function of the brain, then, what could neuroscience possibly 

contribute to the study of reasoning that isn’t equally or more-thoroughly addressed by the 

experiments and proofs from psychology and philosophy? 
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More generally, this question (or criticism) could be leveled at the entire field of 

cognitive neuroscience. To answer it, we also consider three more direct questions: 

• What is the goal of cognitive neuroscience? 
• How is cognitive neuroscience conducted? 
• What can cognitive neuroscience contribute to programs focused purely on cognition or 

neuroscience alone? 
 

 One view of cognitive neuroscience is that it is a merging of already-mature disciplines. 

By combining principles of behavioral science and neurobiology with norms from probability 

theory and concepts of truth from philosophy of science, we aim to gain a fuller picture of the 

nature of truth and the simultaneously powerful and limited way that the human mind 

understands its environment. The driving goal of cognitive neuroscience is thus to describe how 

the properties of the brain support the intricate inner workings of the human mind. What makes a 

human brain different from the simple neural networks of lobsters or sea snails? What makes a 

modern human brain different from those of modern gorillas and chimpanzees, or the now-

extinct homo neanderthalis or erectus? We look at loss-of-function studies and neuroimaging 

experiments to answer very basic questions about brain-behavior relationships as a whole, and in 

so doing we gain insight about the component parts as well. Therein lies the possibility of 

learning how individual neurons represent information in a way that supports representational 

thought, and why skin cells or muscle cells signaling to one another do not have the same 

capability. Therein also lies the possibility of learning about the nature of thought itself; by 

probing the brain’s limits of processing power, we learn about the most likely calculation being 

used in addition to the nature of the cognitive task being engaged: in this case, causal reasoning. 

 The methods favored by cognitive neuroscientists involve using brain imaging methods 

to measure the structural and functional correlates of specific psychological events like memory 

retrieval, and how they explain inter-individual differences in competencies like the number of 
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items that can be remembered or the ability to inhibit attention to distracting information. Simple 

statistical tests can be used to show a correspondence between focal brain damage and 

categorical deficits on very specific information processing abilities. Machine learning 

algorithms can be used to extract complex patterns of network activity in the brain that 

correspond to subtle differences in the same abilities. Reviewing the cognitive neuroscience 

literature on any given topic typically yields a map of brain regions where changes in blood flow, 

electrical field, or structural integrity correspond to some psychological function of interest. It is 

tempting, then, to survey the cognitive neuroscience literature on reasoning, combine the results 

onto a template brain image, and declare that we have uncovered the “reasoning network.” Doing 

so is certainly a promising beginning to our foray into the neuroscience of reasoning, if for no 

other reason than to make a list of other psychological functions supported by such a network, to 

then be tested for their possible involvement in the reasoning process as well. However, relying 

too heavily on a map of task activations from univariate neuroimaging studies will only take us 

so far in trying to understand the neural mechanisms of reasoning; doing so would ignore the fact 

that maps of brain activation can be engaged by nuisance variables or “demand characteristics” 

just as easily as the task of interest, even when the underlying experiments were conducted with 

rigorous control conditions. The “reverse inference” problem inherent to trying to explain 

exploratory cognitive neuroscience findings is that a particular brain region or network’s ability 

to support a given cognitive function does not imply that there is only one function served by 

that region, or that the cognitive function in question is also involved any time its supporting 

regions are implicated in some other task (Poldrack, 2006). Such an assumption ignores the facts 

that brain regions support multiple psychological functions, and functionally different brain 

networks frequently share some nodes in common. Finally, a fundamental functional network to 
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support some cognitive function of interest will often appear to have moved or changed in its 

temporal characteristics based on contextual factors other than the function of interest; this 

insight has led to a theory of intelligence based on a single “multiple demands” network that is 

the core driver of all facets of goal-directed or intelligent behavior in humans, with differences in 

brain activations being attributable to demand characteristics, or low level task features like 

sensory modality or the extent of attention allocation required (Duncan, 2010). With the context 

and limitations of early cognitive neuroscience methods in mind, we will propose programmatic 

research on the neural correlates of causal reasoning, with particular attention paid to how we 

might move beyond univariate task-activation neuroimaging studies. 

One motivation for studying reasoning from a cognitive neuroscience perspective could 

be to engage in the debate between competing models, testing their predictions to offer evidence 

as to which models are more plausibly being implemented. However, there is a fundamental 

mismatch between the methods and conceptual canon of the respective fields; the 

interdisciplinary intersection between the two fields is simply too immature to pursue this end. 

Cognitive science and neuroscience operate at different levels of conceptual resolution, in that 

subtle distinctions in symbolic representations of causality have yet to be characterized at a level 

that can be described in terms of broader patterns of activity in neurons or networks of neurons. 

Even if the conceptual resolution were made equal, the most basic units of representing 

information in the study of causality (e.g. truth statements, negation operators) and neuroscience 

(e.g. action potentials, post-synaptic potentials, blood oxygen level dependent response curves) 

can not be readily translated into one another. These problems have been referred to as 

granularity mismatch and ontological incommensurability, as discussed in the context of the 

mismatch between neuroscience and linguistics (Poeppel & Embick, 2004). Whereas Poeppel 
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and colleagues suggest using behavior (language, in their case) as a model system to understand 

computation in the brain, we apply their sentiment to causal reasoning: understanding the form 

of reasoning sheds light on how the brain represents information. We also believe, however, that 

understanding the brain’s mechanisms can offer insight into the fundamental nature of reasoning, 

as long as members of the separate disciplines are made adequately aware of their respective 

assumptions in trying to map findings from one field onto another.  

To more directly answer our final question concerning this interdisciplinary field of 

study, why is neuroscience evidence important to non-neuroscientists? Information processing 

systems can be described at three levels that were first proposed for the study of visual 

perception (Marr, 1982). To fully understand the system, it is advantageous to account for its 

properties at each level of the hierarchy, and neuroscience offers a complementary perspective to 

those made available by other disciplines. For any information processing system, the calculation 

at hand or goal to be achieved is the computational level; recognizing objects or categorizing 

items to support hunting or gathering behaviors is one type of computation. The set of rules for 

translating input into output is the algorithmic level, in that it functions as a set of instructions 

that could be carried out by different people, or with some degrees of freedom. Using checklists 

of necessary and sufficient features to categorize objects is one algorithm; a more effective 

algorithm is to appeal to underlying reasons for the features to define a category (Murphy & 

Medin, 1985). Finally, the way a physical system carries out the calculation using a particular 

algorithm is the implementation level. Different neurons in visual cortex use changes in the rates 

of their spiking patterns to signal the receipt of an image corresponding to particular colors or 

shapes. Object recognition computer programs, on the other hand, can implement similar 

calculations and algorithms using a physical system involving wires and silicon wafers.  
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What neuroscience has to contribute to the study of causal reasoning is that it is one of 

few disciplines poised to support a discussion on the implementation level of human reasoning. 

Those in cognitive psychology who are interested in the descriptive validity of reasoning models 

clearly need to understand the properties and limitations of the system that is being modeled. 

Even those among us who are only interested in rational models, however, would benefit from 

comparing them alongside the descriptive models; this is because it could be of interest to know 

whether (and if so, when) the solutions to reasoning problems that are naturally generated by the 

brain perform more accurately or efficiently than those using the steps prescribed by rational 

models. Brains were shaped by the forces of evolution that simply rewarded the solutions for 

problems of survival and reproduction. This process involved simple adaptations, like cellular 

mechanisms for resisting disease, and the behavioral propensity to band together in social groups 

for support. It also involved the ability to not only learn which parts of the environment were 

safe or dangerous, but also to predict whether that might change in the future on the basis of new 

information. This is at the heart of causal reasoning, and we aim to understand how human 

biology generated a solution to the need for explanation and prediction. 

The goals of this chapter are twofold: to survey the current states of the cognitive and 

neural literatures on causality while acknowledging the mismatch between methods and 

observations between the disciplines, and to make the case for further developments in the 

cognitive neuroscience approach to study reasoning, in pursuit of a program from which scholars 

residing in pure cognitive science and pure neuroscience will benefit equally as those who 

operate in the intersection between the fields. Toward this end, we will use the following 

structure: 
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• Examine the descriptive instantiations of several rational models of reasoning, 
considering the predictions they might make if they were to be implemented by a neural 
system as currently understood. 

• Review the results of neuroscience experiments aimed at probing how the brain supports 
the concept of causality, considering whether they have any implications for the 
differences between purely cognitive models of causal reasoning. 
 
The first model we will consider is Mental Models Theory (MM), which suggests that 

abstract representations of states of affairs in the world are constructed on the basis of possible 

co-occurrences of events that are licensed under a particular relation like “cause” or “prevent” 

(see Johnson-Laird and Khemlani, this volume). Mental Models feature deductive reasoning over 

fundamentally deterministic relations as the primary method of combining knowledge about 

separate relations to draw conclusions or generate new knowledge. The second model is Causal 

Models Theory (CM), suggesting that causal reasoning is supported by abstract representations 

linking events to one another as a probabilistic network that can be depicted visually with 

directed graphs and structural equations (see Rottman, this volume). CM theory features the 

representation of probabilities and inductive reasoning as a central element of causal reasoning. 

The third model considered in this chapter is Force Composition Theory (FC), in which causal 

relations are represented in terms of forces interacting with one another to account for the 

movement of a system toward or away from a particular endstate (see Wolff, this volume). FC 

theory emphasizes perceptual representations of forces that preserve the structure of the relations 

being symbolized. Diagrams depicting force vectors are thus used to describe the way individual 

force representations can be combined to draw conclusions from previously unconnected 

relations. Causal representations in FC theory depend on an understanding of the way physical 

forces interact with one another, but are also flexible enough to be analogously applied to more 

abstract forces like emotion and interpersonal communication. 



 12 

Many of the behavioral predictions of each theory are identical; they converge on the 

same inference being drawn in a particular context, which is part of the reason for the granularity 

mismatch between the psychology and neuroscience approaches to modeling causal reasoning. 

Cognitive scientists and psychologists draw very fine distinctions between modes of thought, 

while cognitive neuroscientists are still building theories that map coarse concepts like causal 

attribution onto large-scale brain networks. The cognitive theories’ departures from one another 

are in the predictions of how people draw inferences in complicated or ambiguous scenarios, so 

we will focus our discussion on how people combine multiple causal relations to draw inferences 

about transitivity (or lack thereof). Causal reasoning itself is complex, and has presumably 

evolved to support representations roughly resembling truth to be drawn from the complex and 

often inconsistent information about dependencies between events around us. The ability to draw 

conclusions that only approximate ground truth may be adequate to learn enough about our 

environment to survive and reproduce, which may account for why the descriptive computational 

theories of reasoning depart from the rational solution to a reasoning problem at times. A great 

deal of research in cognitive neuroscience is undertaken with the short-term goal of localizing 

behaviors to modules or networks in the brain, identifying the common and distinct neural 

correlates of dissociable psychological functions. A loftier goal of much of the same research 

(and perhaps a more nebulous one) is identifying the underlying organizational principles that 

dictate how the physical properties of the brain support the cognitive architecture supporting the 

mind. From this perspective, understanding the physical implementation of causal reasoning in 

the brain can help constrain psychological theories to reflect the properties of the biological 

system supporting it (Goel, 2005). We acknowledge from the outset that the cognitive 

neuroscience evidence on causal reasoning, rather like the evidence from the behavioral and 
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cognitive realms, is not free of ambiguity. Further programmatic research, making use of recent 

developments in neuroimaging technology, holds promise for resolving some of the ambiguity 

concerning mental constructs that may fundamentally feature a number of alternative modes of 

thought available under different circumstances. 

At the most general level, cognitive neuroscience evidence supports a distributed 

information processing system engaged by goal-directed behavior, including such networks as a 

fronto-parietal tract supporting attention and executive control, and fronto-hippocampal tracts 

supporting memory encoding and retrieval (Barbey, Colom, et al., 2012; Duncan & Owen, 2000; 

Vincent et al., 2008). Causal reasoning is likely to engage a subset of those networks in the 

service of goal-directed behavior, and can be subdivided into such processes as judgment or 

recognition of causality, prediction, and explanation. The different psychological theories of 

causal reasoning each make predictions about the information processing steps that people use 

when reasoning over complex sets of relations. Many of those predictions are invisible to 

neuroscience methods at their current conceptual (and temporal/spatial) resolution, but some of 

them have implications with respect to the likely neural correlates of reasoning behavior, 

selectively highlighting elements of the attention, memory, and control networks mentioned 

above. Furthermore, the nature of the causal representations themselves will also be reflected in 

the neural correlates of causal reasoning. Currently, it remains unclear whether causal beliefs are 

supported by simulation mechanisms in the brain that are specific to sensory modalities, abstract 

semantic knowledge networks, or some combination of the two.  

 

2. Psychological Theories of Causal Reasoning 
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Statistical patterns can be used to induce a causal relation between events not previously 

thought to be linked, but this does not account for all instances of causal judgment. It is simple 

enough to agree, in the context of several decades’ worth of medical research, that “smoking 

causes cancer.” Describing the precise nature of the relation as it plays out in specific cases is 

complicated, however, when such preventing and aggravating factors as poverty, education, diet, 

stress and genetic inheritance also appear to coincide with both smoking and cancer. In moving 

from judgment to reasoning (especially under conditions of uncertainty about the original beliefs 

from judgment processes), the complexity of calculating statistical dependencies rapidly 

increases with the number of relations being linked as people consider a chain of possibly-linked 

events. Statistical co-dependency calculations thus account for even fewer instances of reasoning 

than they do for cases of pure judgment. Far from trying to describe the ideal way to reason 

about causal relations, descriptive theories of naïve causality emerged from a desire to instead 

describe actual causal reasoning in daily life. 

For drawing conclusions on the basis of some accepted set of premises (the premises 

being previously accepted causal relations, or a background of prior knowledge), we thus have a 

family of theories of reasoning that each propose special frameworks for creating causal 

representations that can be used to map evidence (in the form of events and their co-occurrences) 

onto novel conclusions.  

Before delving into the features of each psychological theory, note the absence of several 

influential accounts of causal judgment and reasoning in our discussion (see (Ahn et al., 1995; 

Cheng, 1997; Tenenbaum & Griffiths, 2003) for dependency-based accounts of causal induction 

and belief updating). Here, we focus on the computational theories that make behavioral 

predictions about how people represent and combine multiple causal relations to draw 
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conclusions, especially those for which a plausible neural implementation is available based on 

current theory of brain function in cognitive neuroscience.  

 

2a. Mental Models Theory 

Mental Models Theory (MM) as a representational account of causal reasoning was 

inspired by the fact that the rules and representational scheme of formal logic result in a 

combinatorial explosion of additional clauses and statements that must be represented when 

trying to draw conclusions from some set of events or state of affairs in the world. The key 

example offered by its original proponents is that claims of the sort “one of these statements is 

true and the other is false” are much more complex when represented as a series of Boolean 

algebraic statements than they appear to be when non-logicians think about them. See (Johnson-

Laird, 2010a) for the full line of reasoning. The alternative to Boolean algebra and formal logic 

is a more intuitive solution, and one that resonates with common experience: people are able to 

compare current states of affairs with possible states of affairs that do not currently exist, while 

also deciding what sorts of affairs are not possible in the context of what is already believed to 

exist. 

MM theory suggests that people reason by constructing abstract mental representations 

that license possible co-occurrences of events or states of affairs under a given relation, like 

“cause,” “enable,” or “prevent” (Goldvarg & Johnson-Laird, 2001; see Cheng & Novick, 1991 

for another model of the difference between cause and enable). The models are modal in the 

linguistic or psychological sense; the conditions specified in a particular model represent 

necessary (obligatory) or possible (permitted) states of affairs. Table 1 demonstrates an example 

of how “cause,” “enable,” and “prevent” relations between two events or states A and B can be 
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depicted using models. The capital letters represent a variable, and lowercase letters are used to 

represent the presence of the variable or event in question. A negation operator (¬a	or	¬b) is 

used to represent the absence of the event in question.  

If we consider the relation between smoking and cancer, we can generate mental models 

that represent possible states of affairs under each type of relation. “Smoking causes cancer” is a 

general causal statement that licenses three specific possibilities: that smoking and cancer both 

occurred, that no smoking occurred but cancer occurred anyway due to another cause, and 

neither smoking nor cancer occurred. And what about the possibility that a person smoked but 

did not suffer from cancer? It is easy to imagine long-term smokers who never succumbed to the 

graver consequences typically attributed to cancer. When people are asked to explain why not, 

they cite preventing factors like protective genetic mutations, rather than claiming that causality 

is inherently probabilistic. This distinction, that the meanings of causal concepts are 

deterministic, is a fundamental principle of MM theory. Some prior accounts of causal reasoning 

do not make strong claims discriminating between the meanings of verbs such as “cause” and 

“enable” (Cheng & Novick, 1990); they both increase the probability of an effect, and are only 

used differently based on notions of agency versus circumstance, or background conditions 

versus a manipulated factor. MM theory suggests that “enable” has a fundamentally different 

meaning, such that “smoking enables cancer” includes the possibility that smoking occurred but 

cancer did not, instead of the possibility that cancer occurred independently of cancer. The other 

two individual models in the set are identical between the two concepts. “Cause” thus refers to 

conditions of sufficiency to bring about an effect, whereas “Enable” refers to a necessary 

condition that is not sufficient to bring about an effect on its own. “Prevent,” on the other hand, 

refers to mutually exclusive conditions. “Antioxidants prevent cancer,” for example, allows the 
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possibility of antioxidants being present and cancer being absent, antioxidants being absent and 

cancer being present, and neither antioxidants nor cancer being present. Multiple causal relations 

are then combined with one another by listing all of the models (possible co-occurring states of 

affairs) under each relation in a single set, omitting redundant models, and then removing the 

middle event or state to link the first and last events. 

For each relation in MM theory, the entire set of models allowed is collectively referred 

to as the fully explicit model for that term. In special cases, concepts like “cause” and “prevent” 

can take on the strong form of both necessity and sufficiency, such that only the first and the last 

models listed in each column of Table 1 are considered part of the meaning. If, for example, 

smoking were the only possible mechanism of developing cancer, then “smoking causes cancer” 

would take on the strong form of “Cause.” Consider substance abuse for a more realistic 

example: “substance use causes intoxication.” There are no other possible causes for 

intoxication, and substance use (voluntary or involuntary) must occur before intoxication 

(example taken from (Goldvarg & Johnson-Laird, 2001)).  

According to MM theory, people typically construct implicit mental models that capture 

only a subset of the fully explicit representations. Causal terms are usually used with one implied 

meaning, so conventions in communication and notions of shared knowledge lead people to 

assume that the first modality of each set in Table 1 – the implicit model – is the one intended 

when talking about causal relations. The selection of implicit models is further supported by the 

principle of truth, according to which people naturally represent what is true about a given state 

of affairs rather than considering the world otherwise. This bias toward representing true states 

of affairs is the basis for the prediction that combining multiple causal relations will be easier for 

relations that can be accurately combined while using only the implicit models; those requiring 
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the fully explicit models and selective removal of prohibited models will be more difficult and 

prone to error. For example, consider the combination of two “cause” relations, as opposed to 

two “prevent” relations. Smoking causes lung cancer, and lung cancer causes respiratory 

problems. The implicit model for both relations contain all of the information needed to combine 

them, leading to the transitive inference that smoking causes respiratory problems. Double-

prevention is more difficult. Healthy habits prevent lung cancer, and lung cancer prevents good 

health. If we hastily limit ourselves to the implicit mental models, it is tempting to simply drop 

the middle term – lung cancer – and draw a similar transitive inference that healthy habits 

prevent good health. Healthy habits clearly do not prevent good health, and not only because the 

conclusion is inconsistent with experience. “Prevent” relations are not transitive because the 

second instance of prevention requires the presence of an event that is absent after realizing the 

first prevention. The erroneous bias toward inferring transitivity has been observed in behavioral 

experiments among undergraduate students, confirming the prediction of MM theory that double 

prevention will result in an erroneously transitive conclusion (Goldvarg & Johnson-Laird, 2001). 

See Table 2 for an example of causal relations (A causes B, and B prevents C) that can be 

combined using mental models alone, and Table 3 for causal relations requiring fully explicit 

models to arrive at the correct solution (A prevents B, and B causes C).   

In summary, MM theory proposes that causal reasoning depends on multiple 

deterministic relations – implicit mental models – that can interact to assist or prevent one 

another from having a particular effect. Therefore, conclusions are drawn in MM by deducing 

the possible states of affairs that are entailed in the combinations of such deterministic relations 

in the context of background knowledge.  
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A Causes B A Enables B A Prevents B 

a												b	 a											b	 a								¬b	

¬a									b	 a								¬b	 ¬a									b	

¬a						¬b	 ¬a						¬b	 ¬a						¬b	

Table 1. Models representing “cause,” “enable,” and “prevent” relations in Mental Models Theory. Letters represent 
the presence of an event or state characteristic of the category being represented. The negation operator ¬ represents 
the absence of the specified event or state, and should be read as “not-a” or “not-b”. Each column represents the 
fully explicit models for each relation, and the first cell in each column represents the corresponding mental model. 

 

 
A Causes B B Prevents C A Prevents C 

a												b	 b											¬c	 a								b							¬c	

¬a									b	 ¬b								c	 ¬a								b						¬c	

¬a						¬b	 ¬b						¬c	 ¬a					¬b								c	

 	 			¬a					¬b					¬c	

Table 2. Fully explicit models representing the combination of two relations –  “cause” and “prevent” – to yield a 
“prevent” relation between the first and last terms. The implicit mental models in the first row are adequate to draw 
the rational conclusion that A prevents C. Note that dropping the middle terms of the fully explicit models in the 
third column yields an identical set of fully explicit models linking A and C to those that link any other two prevent 
relations. 

 
 

A Prevents B B Causes C A Does Not Prevent C 

a						¬b	 b								c	 				a					¬b				¬c	

¬a								b	 ¬b									c	 a						¬b						c	

¬a						¬b	 ¬b						¬c	 ¬a						b								c	

 	 			¬a					¬b					c	

 	 					¬a					¬b		¬c	
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Table 3. Fully explicit models representing the combination of two relations –  “prevent” and “cause” – to infer that 
A and C are not causally related. The absence of B does not preclude the possibility of other causes of C being 
sufficient. This is counterintuitive if assuming the strong version of “B Causes C,” in that B is the only possible 
cause of C, and its prevention also prevents any of its later effects. Using only the implicit mental models in the first 
row of the first two columns yields this incorrect inference, which is consistent with the principle of truth and the 
prediction that using fully explicit models to reason places a heavier burden on working memory than most people 
normally use without being instructed to. 

 
 
 
 
2b. Causal Models Theory 
 

Causal Models Theory (CM) proposes that mental representations of causal knowledge 

reflect probabilistic relationships. Fundamentally deterministic relationships can be represented 

using causal models as well, albeit in a probabilistic mental representation due to uncertainty 

concerning hidden variables. CM theory is based on the construction of abstract mental 

representations and makes use of the Bayesian Belief Network (hereafter: Bayes Net) as a 

normative approach to causal induction and causal reasoning (Pearl, 2000).  

A Bayes Net is a directed, acyclic graph representing events and the relations between 

them. Events are represented as circles or nodes, and causal links are represented as arrows 

between the nodes. “Directed” refers to the asymmetry of a causal relation; changing the status 

of a cause influences the status of an effect, but changing the status of an effect does not 

influence the status of its antecedents. “Acyclic” only refers to the fact that the networks are not 

used to describe closed systems or feedback loops. Each Bayes Net is also accompanied by a 

series of structural equations describing the relations therein. “A causes B” is thus represented 

with a cause operator “∶=” as “B ∶=	A”; the positions on either side of the cause operator are not 

interchangeable. “Prevent” relations can be represented using a tilde “~” instead of the negation 

operator “¬,” such that “A prevents B” is equivalent to “A causes ~B” or “A causes not-B” 

being represented by “~B ∶= A”. “Enable” relations in CM theory imply that the first event is an 
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enabling factor that allows another causal factor to have its effect. “A causes B when X enables 

it” is represented by “B ∶= A, X”. See Figure 1 for a Bayes Net representing possible causes, 

enablers, and preventing factors influencing influenza infection. 

CM theory supports predictive and explanatory reasoning by featuring mental 

intervention as the primary mode of reasoning; variables in the model can be manipulated to take 

on values that vary from reality or whose status is unknown. The structural equations 

representing the statistical dependency between states of connected nodes are then used to 

imagine how intervening on the causal model will have effects that propagate through the 

network. The construction of complex causal relations is thus supported by intervening on a 

mental causal model while also combining the structural equations corresponding to each 

relation in the network.  

One respect in which the CM theory differs from the MM theory is that it predicts that 

double-preventions will result in the correct inference of “cause” or “allow/enable,” instead of 

incorrectly inferring “prevent.” Although previous experiments confirmed the predictions of MM 

theory concerning double-prevention, subsequent studies by other experimenters have found 

evidence supporting this prediction of CM theory (Sloman et al., 2009). The authors 

acknowledge, however, that subjects’ reasoning in both studies may be subject to the unintended 

influence of “atmosphere effects”: that a high rate of a particular answer type being correct in an 

experiment may lead to perseverative answering when subjects encounter more difficult trials. 

See (Sloman et al., 2009) for a full discussion of more nuanced differences in predictions 

distinguishing combinations of “cause” and “allow” or “allow” and “prevent”; these distinctions 

are valuable in distinguishing between theories at the behavioral level, but they are beyond the 

scope of the current cognitive neuroscience literature on causal reasoning because noninvasive 
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brain imaging methods have not yet been used to resolve the difference in representing such 

similar terms as “prevent” and “cause-not” or “allow-not”. 

 

 

 

Figure 1. Causal model for influenza  
“Cause” relations are represented by grey edges; B ∶=	A 
“Enable” relations are represented by blue edges; B ∶= A, X 
“Prevent” relations are represented by red edges; ~B ∶= A 
Flu exposure causes flu infection, unless it is prevented by vaccination. Vaccination can fail, however, if a mutation 
in the virus enables the exposure to still cause an infection despite vaccination. Note that “enable” relations imply an 
accessory variable, and do not necessarily over-ride “prevent” relations as depicted in this example. 
 
 
 
 

2c. Force Composition Theory 

The third model of causal reasoning we consider is motivated by an effort to ground 

causal representations in the physical structure of forces and events in the world (Barbey & 

Wolff, 2002). According to Force Dynamics (or Force Composition, FC) theory, causal relations 

are mechanistic and represent the transference of a conserved quantity from cause to effect (Ahn 

& Kalish, 2000). Imagine, for example, a golfer who slices a ball into a tree that knocks it into 

the hole. Based on understanding the physical mechanisms at work, people would correctly infer 

that the tree caused the hole-in-one rather than the golfer’s poor shot, even though nobody would 

claim that trees are generally causes of holes-in-one (Ahn & Kalish, 2000). Whereas prior 

mechanistic theories did not explain causal relations that take place over a distance (e.g., 

Flu Exposure

Flu Virus Mutation Flu Infection

Coughing

SorenessVaccination
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gravity), over large time intervals (e.g., cancer), or with abstract influences that only resemble 

forces (e.g., social communication), FC theory is flexible enough to account for all such features 

of causal reasoning because abstract forces can be represented as vectors with magnitude and 

direction. FC theory is also unique in that its mechanistic representations are concrete: they are 

grounded in tangible features of the world being simulated. See (Johnson & Ahn, this volume) 

for current mechanistic theories. 

Specifically, causal reasoning in FC theory is supported through the construction of force 

vectors that represent causal mechanisms between events in the context of tendencies toward or 

away from an endstate. As with free-body diagrams in Newtonian physics, force vectors are 

simply iconic arrows with both direction and magnitude that can also be re-conceptualized as the 

transfer of energy (or causal influence, if you will). Force vector addition along a single axis can 

thus be used to characterize the overarching structure linking a series of causal relations in a 

chain of events, which can then be used to predict the future and explain the past by mentally 

changing the vectors’ directions and magnitudes.  

The first vector in a force composition diagram is that of the patient: the thing being acted 

upon. An affector vector then represents the force imparted by the thing acting on the patient. An 

endstate vector is a positional vector only, representing the state of affairs being caused or 

prevented. Predicting the future state of the system is achieved by combining the patient vector 

with the affector vector; if the resultant points in the direction of the patient’s endstate, then the 

affector is said to have caused the endstate. Negative relations like “prevent” can be represented 

by the removal of a causal force vector, or the addition of a force vector in the opposite direction 

from that of the endstate; similarly, the removal of a preventing force vector can result in a 

“cause” relation (Wolff et al., 2010).  
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Figure 2. (Reprinted with permission from (Wolff & Barbey, 2015)) Free-body diagrams representing different 
causal concepts in force composition theory. In these diagrams, A = the affector force, P = the patient force, R = the 
resultant force, and E = endstate vector, which is a position vector, not a force. 
 

 

Reasoning about complex relations involving multiple patients and affectors is achieved 

by simply adding vectors from the individual relations. A cause relation is typically represented 

by a diagram with the patient’s vector pointing away from the endstate, the affector’s vector 

pointing toward it, and the difference between the two such that the resultant points toward the 

endstate. An “enable” or “allow” relation is represented by the patient’s vector pointing toward 

the endstate, the affector’s vector pointing in the same direction, with the resultant simply being 

the superposition of the two. A “prevent” relation involves the patient’s vector pointing in a 

particular endstate’s direction and the affector’s vector pointing away from it with a magnitude 

great enough for the resultant to point away from the endstate. Figure 2 depicts the free-body 

diagrams representing “cause,” “enable,” and “prevent” relations in FC theory.  

When reasoning about two “cause” or “enable” relations, the resultant of the first relation 

becomes the affector acting on the patient in the second relation. The endstate of the conclusion 

is taken from the endstate of the second relation. Importantly, the magnitudes of each force 

vector are relative, rather than explicitly representing a probability. Some combinations of 

relations are able to support multiple conclusions’ being drawn. In those cases, probabilistic 

relations can be supported by integrating a mathematical function of changes in magnitude on a 
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particular conclusion being drawn. More specifically, by incrementally changing the magnitudes 

of the force vectors in each premise relation, the relative frequencies of seeing each conclusion 

type can be calculated (see (Wolff & Barbey, 2015; supplementary materials) for details on this 

procedure). For example, combining two prevent relations (A prevents B; B prevents C) will 

result in a conclusion of either A allows C or A causes C, based entirely on the relative 

magnitudes of the affector and patient vectors in each premise (see Figure 3). Mentally, the 

second premise in a double prevention must be represented before the first relation can act on it. 

Imagine pulling a plug out of a drain in a basin full of water. Pulling the plug out prevents it 

from being in the drain, and the plug being in the drain prevents the water from leaking out of the 

basin. Pulling the plug allows/causes the water to leak out of the basin, but mentally representing 

this set of causal relations requires that there be some concept of water in the basin whose 

leaking must be allowed in the first place (see (Wolff & Barbey, 2015) for this example and a 

full discussion of representing double prevention with force vectors). 

Note that abstract causes like those involving interpersonal communication (e.g., a 

compliment causes a student to feel good, and criticism causes a student to feel bad) can also be 

represented visually using vector arrows that point toward or away from the endstate. The 

underlying mental representations need not be arrow-based graphs, however, and can still 

involve the drawing of causal inferences by superimposing such abstract “forces” onto one 

another.  
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Figure 3. (Reprinted with permission from (Wolff & Barbey, 2015)) Force composition allows the combination of 
force vectors representing separate causal relations to draw conclusions that are not explicitly represented in the set 
of causal premises. Combining two CAUSE relations results in the system moving toward the endstate of the second 
relation. Combining two PREVENT relations similarly results in the system moving toward the endstate in the 
second relation, with the major difference between the two being the original tendency for the system toward or 
away from the endstate.  
 
 
 
 

3. Neural Implications of Causal Reasoning Models 

The reviewed computational models of causal reasoning make alternative claims about 

the cognitive representations and processes that support causal inference. Each theory further 

motivates alternative predictions about the neurobiological bases of causal reasoning and can be 

evaluated in light of the emerging neuroscience literature on causal perception, judgment, and 

reasoning.  

Before turning to a discussion of the different neural implications of each theory, we note 

commonalities across the reviewed frameworks. Indeed, any model of causal reasoning requires 

that some information about events and their relations be represented in the mind as a conscious 

thought. This will require attention mechanisms in the brain to direct one’s internal focus toward 

the piece of information being considered or manipulated; the parietal lobe is typically thought of 

as a major supporter of attention mechanisms, but modality-specific attention mechanisms are 

also known to engage perceptual processing substrates in the occipital, temporal and frontal 

lobes (Smith et al., 2013). The frontal eye field in the posterior frontal lobes, for example, 

supports eye movement and is involved in directing visual attention; dorsolateral prefrontal 

cortex (anterior to the frontal eye fields) assists with selective attention, or the ability to attend to 

some features while suppressing attention to irrelevant ones, along with the many other functions 

it supports.  
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Causal reasoning will also require the engagement of memory systems, both to retrieve 

semantic and episodic memories from previous experience, and to support the ongoing 

availability of multiple pieces of information during the reasoning process. Memory encoding 

and retrieval processes are known to rely heavily on subcortical features of the medial temporal 

lobe, but memory storage and simulation of previous experiences engages the frontal lobes and 

posterior primary sensory processing networks as well (Buckner et al., 2008).  

Lastly, causal reasoning will require the so-called executive control mechanisms in the 

brain that allow the manipulation of information and selective activation and inhibition of the 

involved attention and memory processes (Miyake et al., 2000). Executive control processes 

reliably engage a fronto-parietal network in the brain (Banich, 2009; Vincent et al., 2008). 

 Taken together, the three broad constructs supporting attention, memory, and executive 

control processes would suggest that the entire brain is involved in causal reasoning. Where we 

can separate the component processes from one another, and perhaps separate necessary and 

sufficient brain networks from those that are simply correlated, is in the predictions made by 

each of the theories of causal reasoning discussed here, and how they map onto discrete 

components of the constructs outlined above. The greatest distinction between the descriptive 

theories of causal reasoning is that they emphasize different underlying modes of information 

processing. These processing modes can be used to predict the large-scale networks that should 

be engaged in the brain beyond particular subregions in the prefrontal or medial temporal cortex, 

which we outline here. 

 

3a. Mental Models Theory 
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 The key to predicting the neural substrates of causal reasoning on the basis of MM theory 

is the fact that it is based on an abstract, modal code representing possible states of affairs 

entailed by a causal relation, and uses deductive inference to draw conclusions from multiple 

relations.  

The neural correlates of deductive reasoning have been characterized in prior work as a 

system of modular brain networks (Goel, 2005). Deductive inference from syllogisms – 

reasoning from accepted premises to a conclusion guaranteed on the basis of the premises – 

typically engages a network of frontal and temporal regions. Hemispheric lateralization of 

deductive reasoning has been observed, but different experimental approaches have resulted in a 

diverse pattern of findings. For example, studies comparing syllogistic and spatial reasoning 

against a comprehension control condition revealed a left-sided frontal and temporal reasoning 

network (Goel et al., 1998). Evidence further indicates that deductive reasoning is localized to 

the left hemisphere when contrasted against an inductive reasoning task (Goel & Dolan, 2004).  

Others studies report different cross-hemispheric dissociations of deductive and inductive 

reasoning when directly contrasting the two against each other (Osherson et al., 1998). It initially 

appeared that deductive reasoning engaged a right-sided pattern of parietal activation, which 

would be consistent with visual and spatial representations being the primary mode of deduction 

(Osherson et al., 1998). However, when using stimuli that are more easily represented using 

propositional logic than spatial models (or at least an abstract code), another division of labor 

emerged; deductive reasoning engaged a right-sided frontal and temporal network (specifically, 

middle temporal lobe and ventrolateral prefrontal cortex), while inductive reasoning engaged a 

left-sided fronto-temporal network (specifically, ventrolateral PFC, dorsomedial PFC, insula, 

posterior cingulate, and the medial temporal lobe) (Parsons & Osherson, 2001).  
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Some of the differences in results across studies can be attributed to task-specific 

engagement of brain networks beyond the core reasoning components of a particular task; 

syllogistic reasoning about unfamiliar information engages perceptual processing regions in the 

parietal lobe as well, while reasoning about transitive relations concerning familiar semantic 

content additionally engages medial temporal structures as the hippocampus and 

parahippocampal gyrus (Goel, 2007; Goel et al., 2000). Further research is necessary to 

characterize the different contributions of stimulus-specific activation and the true correlates of a 

core reasoning network, but it is most likely that deduction engages the frontal and parietal 

cortex, with some right-hemispheric specialization for both spatial and deterministic reasoning. 

 Proponents of MM theory have described it as an iconic, visuospatial theory of reasoning 

(Johnson-Laird, 2010b). It employs representations that are iconic in the sense that they preserve 

the structure or order of events in the world without taking the form of a sensory representation 

that is isomorphic with the events or objects in the world; events preceding each other in the 

world are represented by mental models that similarly precede one another in the same order, for 

example. MM theory is a visuospatial theory of reasoning in that its models can take the form of 

spatial diagrams. Just as categorical syllogisms can be represented visually with Venn Diagrams 

or Euler Circles, the possible events that are entailed by a particular causal concept can be 

represented in the mind using spatial models and set theory notation.  

MM theory does not claim, however, to feature mental simulations grounded in the 

sensory modalities (in this sense, we use “modality” to refer to a particular type of sensory input, 

rather than its use in modal logic to refer to possibility; any further reference to this meaning will 

be called “sensory modality” rather than “logical modality”). Whereas deductive inference 

appears to rely on the left frontal lobes in the brain, the manipulation of spatial objects using 
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action representations is considered to rely on the parietal lobes (O’Reilly, 2010; Ungerleider & 

Mishkin, 1982). Human lesion evidence indicates that the right hemisphere is selectively 

engaged by spatial reasoning, with right posterior cortical lesions (to the parietal, occipital, or 

posterior temporal lobes) conferring a marked deficit in the mental manipulation of spatial 

representations, particularly for mental rotation of visual objects (Ratcliff, 1979). 

Neuropsychological evidence from split-brain patients (whose hemispheres have severely limited 

communication with one another after surgical resection of the corpus callosum) in addition to 

neuroimaging evidence measuring the activity in healthy subjects’ brains suggest that the right 

hemisphere is the seat of a visuo-spatial “interpreter” of sorts; both hemispheres are able to 

perceive visual and spatial information for simple tasks like object identification, but the right 

hemisphere appears privileged in complex spatial reasoning (Corballis, 2003). Right-hemisphere 

dominance has thus been suggested as a possible organizing scheme in the brain’s 

implementation of causal reasoning (Johnson-Laird, 1995).  

Recent evidence confirms that posterior cortex plays a role in spatial intelligence, but the 

picture is now more complicated than the right-hemisphere hypothesis suggested previously. 

Bilateral parietal cortex was engaged by a task requiring spatial discrimination in a neuroimaging 

study, while mental rotation of spatial objects engaged only the left inferior parietal cortex and 

right subcortical nuclei (Alivisatos & Petrides, 1997). Another study found bilateral parietal 

activation during mental rotation of a variety of visual objects (Jordan et al., 2001). The original 

right-hemisphere reasoning hypothesis (Johnson-Laird, 1995) has thus been updated to suggest 

instead that the visuospatial processing system in the brain – including primary visual cortex in 

the occipital lobe and the correlates of higher-order cognitive manipulation in parietal cortex – 

forms the core of a reasoning network (Goel, 2005). Evaluating this prediction in light of the 
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neuroscience evidence on reasoning about syllogisms (i.e. explicitly focusing on deductive 

reasoning) confirms that some types of reasoning engage a visuospatial system, but a number of 

experimental manipulations also yield engagement of other systems in the brain, suggesting that 

a dual-process framework of belief activation and evaluation of evidence might be the most 

accurate way to describe the neural correlates of deduction (Fugelsang & Thompson, 2003).  

An intuitive system involving the neural correlates of emotion, language and memory is 

engaged by the use of heuristics and biases from prior beliefs when reasoning about familiar 

premises and evidence that is consistent with previous experience, whereas a slower, reflective 

system involving visuospatial manipulation is engaged by reasoning about unfamiliar premises 

or those involving a conflict between evidence and belief (Goel, 2005). The intuitive system 

includes the ventromedial prefrontal cortex (vmPFC), medial temporal lobe (MTL) memory-

processing structures, and distributed temporal lobe structures for supporting conceptual 

coherence and the implementation of language rules. The reflective reasoning system includes 

bilateral parietal cortex. 

 Whereas other theories of reasoning predict counterfactual inference and manipulation of 

mental representations as a major component, the principle of truth in MM theory – that it is 

easier to represent what exists by using mental models than what does not exist in fully explicit 

models – suggests that people will only engage in counterfactual reasoning when necessary, 

instead giving a central role to only the maintenance component of working memory in support 

of tracking multiple possibilities. This process engages the vmPFC, and could explain why 

people intuitively preferred calling a double-prevention relation a transitive prevention in some 

previous experiments (Barbey et al., 2011). This would be consistent with the dual-process 

hypothesis that causal reasoning includes both intuitive judgments (with simple mental models 
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that are consistent with prior beliefs) relying on the vmPFC and the combination of mental 

models to draw more complex conclusions using the parietal lobes for visuospatial manipulations 

(Goel, 2005). Such a pattern has been observed in studies focusing on deductive reasoning. 

Seeing a similar pattern in reasoning about causal relations that are not explicitly deductive 

would be consistent with deductive reasoning and mental models being descriptively valid in the 

context of complex causality, but would not rule out the possibility that deductive reasoning is 

primarily causal instead of causal reasoning being fundamentally deductive.  

 Recent developments in MM theory go beyond visuospatial manipulation, however, 

suggesting that the core features of the theory can also be mapped onto other brain structures 

(Khemlani et al., 2014). Specifically, the reflective system in the dual-processing framework 

mentioned above should be expanded beyond the parietal lobes to include the prediction that 

reasoning over mental models will engage the lateral prefrontal cortex (lPFC). Recall that mental 

models are modal in nature; they license possible states of affairs. The encoding of stimulus-

response rules has been mapped to populations of neurons in dorsolateral PFC (dlPFC) (Mian et 

al., 2014); these stimulus-response mappings could be interpreted as an action-based 

instantiation of a more general mechanism in the lateral PFC for supporting mental models that 

link events in space and time. Although mental models are not iconic in perceptual form, they 

have been called iconic in that they preserve the relative structures of objects in space, events in 

time, and members of abstract sets to each other (Johnson-Laird et al., 2004). Subdivisions of 

lateral PFC are recognized as signaling object and concept representations that could plausibly 

support the maintenance of abstract sets of objects and events in the mind. Finally, the principle 

of truth suggests a natural preference for representing true states of affairs, rather than the 

alternative possibilities that can be imagined from a fully explicit set of models. The ability of 
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prefrontal neurons to maintain stimulus-related activity in the absence of a stimulus has long 

been a central principle of understanding the prefrontal cortex (Fuster, 1989). This feature is also 

the basis of the Guided Activation model of the PFC, a process model in which the PFC 

primarily serves a control function, selectively activating or inhibiting different stimulus-

response mappings according to the contexts that dictate when they are appropriate or not. The 

fact that the PFC (lateral PFC in particular) must assign task-relevance to some representations 

over others and sustain attention to them in the service of goal-directed behavior, has been 

suggested as also supporting belief-oriented processes like reasoning (Khemlani et al., 2014). 

Under this view, sustaining attention to a task-relevant set of representation and discarding 

distractors is analogous to sustaining attention to a model of what is true while disregarding 

alternative possibilities.  

Note that a role being played by lateral PFC in reasoning is not unique to MM theory. 

The neural correlates of cognitive flexibility feature prominently in this hypothesis, but 

alternative hypotheses emphasizing causal models or force representations would presumably 

appeal to cognitive flexibility as well (Barbey et al., 2013). What is specific to MM theory 

among the other models discussed here is its suggestion that a combination of abstract models 

and symbolic manipulations (e.g. truth statements and negations) is part of causal reasoning. 

Lateral PFC supports abstract symbolic manipulations of information being held in working 

memory, including information that is not primarily a sensory mapping or sensory reconstruction 

of the world (Khemlani et al., 2014; Ramnani & Owen, 2004; Tettamanti et al., 2008). 

Together, the neural implications of MM theory can be summarized as the engagement of 

a reflective reasoning system including the right lateral prefrontal cortex and right parietal 
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cortex, with the interaction between prior beliefs and evidence supported by bilateral 

ventromedial prefrontal cortex and fronto-temporal memory systems. 

 

3b. Causal Models Theory 

 One advantage of CM theory is that its implementation would place less of a demand on 

the number of slots available to working memory processes (or bits of information that can be 

represented). The combinatorial explosion characteristic of purely statistical accounts of causal 

judgment and reasoning is not entirely escaped by MM theory, when multiple relations require 

the expansion of mental models into their fully explicit models. When people reason correctly 

about the combination of two prevent relations into a single allow or cause relation, a graphical 

Bayes Net would place less of a demand on the limits of short-term memory, while also 

supporting the manipulation of variables’ values and edges’ directions to recognize the lack of 

transitivity. This process of intervention, central to the CM approach, requires the manipulation 

of information in working memory, and selectively relies on the dlPFC (Barbey, Koenigs, et al., 

2012). 

 Furthermore, CM theory flexibly supports the representation of either a probabilistic or 

deterministic world-view, such that probabilistic data about a relation can be interpreted just as 

easily in terms of alternative causal nodes as in terms of a fundamentally stochastic relation. The 

neural correlates of inductive and deductive reasoning, however, remain to be well characterized 

(see Section 3a). As mentioned previously, some studies find that induction is specific to the left 

PFC with deduction being localized to the right hemisphere (Parsons & Osherson, 2001), 

whereas others find that induction and deduction are both left-lateralized, with ventral selectivity 

for deduction and dorsal selectivity for induction (Goel & Dolan, 2004). Other neuroimaging 
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studies from the decision-making literature, rather than those directly bearing on causal 

reasoning, have identified an uncertainty monitoring network engaging the PFC, parietal and 

insular lobes (Huettel et al., 2005). The neural correlates even appear to change according to the 

type of probability being represented; ventromedial PFC, insula, amygdala and putamen are 

increasingly activated when judging on the basis of uncertain prior probabilities, and activation 

in posterior occipital cortex scales up according to increasingly uncertain conditional 

probabilities (Vilares et al., 2012). 

 A key feature of CM theory is that it supports intervention – that is, causal models can be 

manipulated to reflect some alternative, or “counterfactual”, state of affairs. This is known as 

counterfactual reasoning. Neuroscience theories of counterfactual reasoning suggest that the 

medial PFC plays a key role in imagining alternative states of affairs, with different regions 

supporting different types of manipulation (Barbey et al., 2009). The ventral medial PFC, often 

associated with value assignment and motivational representations, supports counterfactuals that 

differ in valence of value (better or worse than reality). Dorsal medial PFC supports the 

distinction between action and inaction. According to this view, dorsal medial PFC supports a 

general mechanism for representing states of affairs that do not currently match reality. This 

view is consistent with other accounts of dorsal medial prefrontal cortex (including the cingulate 

gyrus, a fold in the frontal cortex beneath the outer-most layer), that assign to it a central role of 

representing prediction error or conflict between expectancies and reality (Botvinick et al., 

2001). Counterfactual reasoning will also be supported by the working memory mechanisms 

described above, by allowing multiple alternative states of affairs to co-exist while a particular 

state is being modeled and manipulated. The concurrent maintenance of multiple goals or action 

outcomes has been mapped to the frontopolar cortex, another name for the most anterior region 
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of the prefrontal cortex, with the two hemispheres dividing the labor in a task-switching 

paradigm (Charron & Koechlin, 2010). 

 On the basis of cognitive neuroscience theory concerning the functions that comprise 

reasoning through the use of Bayes Nets, the neural implementation of reasoning according to 

CM theory would engage neural correlates of counterfactual reasoning, working memory 

manipulation (rather than pure maintenance), probability judgments and explanatory reasoning to 

resolve uncertainty. We would thus expect to see a primarily left-hemispheric fronto-temporal 

network supporting causal reasoning. 

 

3c. Force Composition Theory 

 The force representations in Force Composition Theory are based on iconic perceptual 

codes in that their organization reflects the structure of the relations being represented (Wolff & 

Barbey, 2015). By analogy, a subway tunnel map is an iconic representation of the true physical 

structure that preserves topology (while sacrificing topographical accuracy). If the iconic 

character of perceptual codes in causal reasoning is limited to their organization in relation to 

one another as represented in visual free-body diagrams, then the process of reasoning from 

causal premises to a conclusion would primarily engage neural mechanisms for constructing and 

manipulating symbolic visuospatial models, rather than isomorphic representations that reflect 

the details of actual causal relations. The superior parietal lobe serves as the node within a larger 

fronto-parietal working memory network that supports the manipulation of visuospatial models 

(Koenigs et al., 2009).  

On the other hand, if the iconic nature of force representations goes as far as imagining 

visual re-creations of the way forces interact with one another in real life, then we would expect 
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to see involvement of more ventral, modality-specific neural correlates in the construction of 

simulations that are then “watched” in the mind’s eye to predict how an imagined causal system 

would behave (Patterson & Barbey, 2012). Specifically, occipital and parietal cortex support the 

construction of visual simulations; premotor cortex, temporal cortex, and occipital cortex support 

representations of action and biological motion (Patterson & Barbey, 2012; Paus, 2005; Schacter 

et al., 2007). Biological motion may be particularly important to the construction of causal force 

representations involving agency, because the features discriminating biological motion as 

detected by more recently-evolved anterior structures in the brain from more primitive motion 

detectors in early visual processing are not purely structural. The movement of articulated joints 

and facial features are processed differently than pure motion because they signify the coherent, 

animated activity of an organism toward some goal or away from some consequence. This could 

be considered a very rudimentary form of causal judgment, and it could conceivably support 

causal reasoning through the use of mental simulations. If so, we would expect to see the neural 

correlates of agency and intention featuring prominently in causal reasoning neuroscience 

experiments: predominantly the middle temporal and medial superior temporal regions (typically 

designated by landmarks at the posterior end of the superior and inferior temporal sulci) 

(Grossman et al., 2000). 

 In summary, the neural correlates of force composition would primarily involve 

modality-specific engagement of sensory processing networks in occipital, parietal and posterior 

temporal cortex to support the creation of an iconic mental simulation, with right-sided parietal 

lobe engagement to support the manipulation or “running” of the simulation. 

 

4. Review of the Cognitive Neuroscience Evidence on Causal Reasoning 
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This section will review the results of cognitive neuroscience research using experiments 

that involve thinking about causal relations (see Figure and Table 4 for a summary of the main 

findings from the fMRI studies on causal judgment and reasoning discussed here). The vast 

majority of cognitive neuroscience research on causal relations is focused on causal judgment, or 

inductively concluding that a causal relation exists. Here we distinguish causal judgment from 

the type of causal reasoning that the psychological models describe in greater depth: the 

combination of previously induced causal relations to infer a larger causal relation that has not 

been directly observed. Although judgment and reasoning can be thought of separately in this 

manner, the major claims of each theory can be applied to causal judgment as well. Causal 

judgment is a form of causal reasoning, in that it involves transforming one form of knowledge 

(the perception of events occurring together) into another (that the events are linked by some 

generative mechanism). Further neuroimaging research should focus on causal reasoning over 

multiple complex relations, such that the behavioral models of causal reasoning can be directly 

mapped onto neuroscience models of network activity, rather than indirectly inferred as in this 

chapter. 
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Figure 4. Brain activation foci from fMRI studies on causal judgment and reasoning. The colored spheres each 
represent the peak voxel in an activation cluster resulting from a linear contrast or regression model. Each color (or 
shade of color) represents a different study. Spheres in shades of red represent studies using Michotte-style collision 
stimuli. Spheres in shades of blue represent studies using social or interpersonal causal attribution stimuli. Spheres 
in shades of yellow represent studies using abstract or verbal causal task stimuli. Individual clusters with fewer than 
10 voxels are excluded from this figure, as are cerebellar clusters and most subcortical clusters.  
 

Study Name Stimuli Contrasts of Interest 
Fonlupt, 2003 (dark red) Physical collisions • Causality > movement 
Fugelsang et al. 2005 (light red) Physical collisions • Causality > causal violations 

Straube and Chatterjee, 2010 (pink) Physical collisions 
• Activation increasing with 

sensitivity to violations of 
causality 

Woods et al., 2014 (bright red) Physical collisions 
• Causal judgment (causal and 

non-causal events) > resting 
baseline 

Fugelsang and Dunbar, 2005 (bright yellow) Simulated medical 
treatment data 

• Plausible > implausible 
medical explanation 

• Data inconsistent with 
plausible explanation > data 
consistent with plausible 
explanation 

• Data consistent with plausible 
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explanation > data inconsistent 
with plausible explanation 

Satpute et al., 2005 (light yellow) Verbal pairs • Causal relationship > non-
causal association 

Blackwood et al., 2003 (dark blue) Vignettes 

• Internal > external attribution 
• Self-serving bias > self-critical 

bias 
• Self-critical bias > self-serving 

bias 

Harris et al., 2005 (light blue) Vignettes 

• Individual attribution > general 
attribution 

• Social attribution > general 
attribution 

 
Table 4. fMRI studies on causal judgment and reasoning. 
 
4a. Causal Judgments Concerning Physical Events 

To study the neural mechanisms in the brain supporting the perception of causal relations 

among physical objects interacting with one another, study participants are asked to discriminate 

between causal and non-causal event chains in a series of videos or vignettes of objects colliding. 

Michotte’s “launching events” are the original and most frequently used version of this testing 

paradigm, involving of billiard balls colliding with one another (Michotte, 1963; White, this 

volume).  

One of the earliest neuroscience studies of causal judgment involved comparing two 

conditions: the first in which people were instructed to judge whether an event was causal or not, 

and a second in which they were instructed to judge which direction a particular ball moved 

(Fonlupt, 2003). Within each condition were two event types: a causal event in which one ball 

strikes another to launch it, and a non-causal event in which one ball simply passes a stationary 

ball without contacting it. The reason for this 2x2 study design was to settle a controversial 

question concerning the nature of causal judgments: is there an automatic “cause perceiving” 

module in the visual processing regions of the brain, similar to feature detectors or ensembles of 

neurons that respond to specific shapes in specific orientations? Or is causality something that 
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must be inferred by putting together the components of an image or vignette? By showing people 

videos of causal and non-causal events while asking them to alternate being attending to causal 

status or lower-level physical features, it is possible to test whether the “neural signature” of 

causal perception is activated any time a causal event is viewed regardless of attention and intent, 

or is only activated when trying to make a causal judgment. This study found no difference in 

brain activation between viewing causal and non-causal events within a particular block of the 

experimenters’ instructions, but the process of trying to making a causal judgment, regardless of 

the stimulus’s features, activated the medial prefrontal cortex when compared with the lower-

level perceptual process of judging motion. There are a number of ways to interpret this finding, 

but the most commonly accepted one is that causal judgment is not an automatic result of low-

level perceptual features activating a causality-specific module; even simple causal judgments 

are the result of a PFC-mediated conscious process in the brain.  

Another study using Michotte’s launching events focused only on the process of making 

causal judgments about events in which a moving ball approaches another ball before stopping 

and launching a stationary second ball (Fugelsang et al., 2005). The goal of this study was to 

investigate the neural mechanisms that enable people to use features like spatial and temporal 

contiguity between events to infer causality. The authors manipulated the stimuli such that the 

non-causal events still involved collisions, but included some violation of the normal rules of 

physics. The spatial gap condition involved the first ball coming to rest before making contact 

with the other ball, and the other ball beginning to move without having been touched by the 

first; if this happened in real life, we would assume some force other than the collision accounted 

for the second ball moving, even if somehow related to the first ball’s movement (e.g. electric 

repulsion between subatomic particles with the same charge). The temporal gap condition 
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involved the first ball colliding with the second, but the second ball only beginning to move after 

a delay of several seconds. When comparing the neural activations of judging causal events with 

judging events featuring causal violation, the authors found neural activation in the right middle 

frontal gyrus (in the prefrontal lobe) and right inferior parietal lobule (in the parietal lobe). 

Comparing the causal condition to only the temporal delay condition selectively activated the 

right inferior parietal lobule. Comparing the causal condition to only the spatial gap condition 

activated the right middle temporal gyrus. Together, these results indicate that there is a 

predominantly right-hemisphere network for perceiving causality from physical events, with the 

parietal lobe being particularly sensitive to detecting spatial contiguity (or inactivation by 

temporal discontiguity) and the temporal lobe being sensitive to detecting temporal contiguity 

between events (or inactivation by spatial discontiguity).  

The intriguing nature of the causal violation studies motivated another neuroimaging 

experiment using launching events. This study used materials in which causal violations were not 

in discrete categories unto their own, but instead involved gradually introducing violations of 

causality such that they were barely noticeable at first and only slowly became more extreme in 

two domains (Straube & Chatterjee, 2010). The temporal delay domain involved increasing the 

increment of time between the collision and the launching of a second ball, starting at zero. The 

spatial domain involved increasing the incident angle of the second ball’s trajectory, starting at 

zero degrees from horizontal, until the balls began moving away at 90 degrees from the direction 

in which they were hit. Participants were asked to judge whether the collisions and launchings 

were causally linked while having the BOLD response in their brains imaged in an MRI scanner. 

Treating the conditions as categorical in the first analysis (causal vs. non-causal) resulted in no 

difference in neural activation between judging causal and non-causal stimuli. Instead, a general 
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causal judgment network was engaged by either condition when comparing the neural activity 

against a resting baseline with no visual stimulation; it included large areas of the occipital, 

parietal and frontal lobes. This is consistent with the earlier findings on causal judgment and 

perception of motion. The absence of a clear distinction between conditions could have been an 

artifact of there not being a clear boundary between causal and non-causal events in the study 

stimuli, however. Crucially, not all participants responded equally to the violations of causality. 

People who were more sensitive to temporal delays had greater activity in the left putamen, a 

subcortical structure associated with controlling movement and the construct of implicit memory, 

including motor and procedural memory. Individuals who were more sensitive to spatial 

violations showed greater activation in the right post-central gyrus and the right parietal lobule. 

The post-central gyrus is also known as the location of the sensory homunculus, allowing 

localization of touch, pain, proprioception and other aspects of bodily states. The parietal lobule 

is known to support spatial mapping and manipulation of objects in space. These findings 

suggest the emergence of a domain-general causal network supporting perceptual causal 

reasoning about physical events, with some specific nodes selectively active in the processing of 

particular features of causal relations, namely spatial and temporal violations of expectation. 

A subsequent study used the same stimuli: launching events with increasingly extreme 

violations based on temporal delays and angles of impact. The key manipulation in this study 

was that participants were alternately instructed to focus only on one domain or the other – 

spatial or temporal contiguity – while making causal judgments (Woods et al., 2014). As with the 

previous neuroimaging studies, no difference was seen between the neural activations of 

responding to causal events and non-causal events. Comparing the general mental state of causal 

judgment against a resting baseline revealed activation in a largely right-sided network involving 
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the right inferior and middle temporal gyrus, right lingual gyrus, right caudate, bilateral putamen, 

bilateral insula, right parietal cortex, middle frontal gyrus, and bilateral cerebellum. When 

participants were asked to focus on the spatial properties of the events, those who were more 

sensitive to violations had increased activity in the bilateral inferior frontal gyrus, bilateral 

inferior parietal cortex, and right superior parietal cortex. When asked to focus on time, the 

participants who were more sensitivity to violations had greater activation in the right 

hippocampus and the bilateral vermis of the cerebellum. A confirmatory follow-up study used 

transcranial direct-current brain stimulation (tDCS) to test whether the responses to causal 

violations can be made more sensitive by selectively stimulating single brain regions from 

among those revealed in the fMRI analysis. tDCS is believed to have an effect by lowering the 

threshold for neuronal firing in the brain regions activated in the fMRI experiment, rather than 

actively causing neuronal firing (see (Nitsche et al., 2008) for a review of hypotheses concerning 

the effects of tDCS). Specifically, the authors used anodal stimulation of the right hemisphere, 

comparing three conditions: frontal lobe stimulation, parietal stimulation, and sham stimulation 

as a control condition. Frontal stimulation increased sensitivity to violations of either spatial 

consistency or temporal contiguity. Parietal stimulation increased sensitivity to violations of 

spatial contiguity only. Together, the fMRI and tDCS findings provide evidence for a right-sided 

network suggesting frontal support for general perceptual causality, and parietal sensitivity to the 

spatial properties of events and relations between them. 

 

4b. Complex Judgments of Abstract Relations 

We can imagine any number of complex events that cannot be adequately explained or 

predicted in terms of visuospatial representations of physical collisions. Judgments of agency 
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and intentionality in a conversation between friends or enemies, for example, require more 

nuanced explanations involving current evidence (statements), prior knowledge (personality 

traits and the likelihood of their causing particular statements), and an understanding of the fact 

that tone and context influence meaning as much as the semantic content of a conversational 

exchange. By using vignettes with people interacting with one another, or descriptions of events 

that need to be explained or predicted in the context of prior experience, the neural correlates of 

complex causal judgment and reasoning can be explored in comparison with the neural 

framework for supporting physical causality. 

As alluded to by our prior examples of reasoning about the relations between smoking 

and lung cancer, the field of medical diagnostics and treatment planning is an area rich with 

opportunity for studying how people understand, represent and manipulate complex causal 

networks. One fMRI study was designed to explore the neural correlates of interactions between 

evidence and prior beliefs, especially as it pertains to the plausibility of a causal mechanism 

having the effect being predicted or explained (Fugelsang & Dunbar, 2005). Specifically, it 

measured the neural correlates associated with judging the efficacy of two treatments for 

depression (either a plausible pharmacological treatment or placebo) in the context of two 

statistical patterns (low rate of treatment success, or high rate of treatment success). Participants 

were asked to decide how effective each of the treatments was in predicting happiness after 

having seen 20 individual trials of each condition (each trial being a hypothetical patient who 

was administered the drug and either responded or failed to respond to the treatment). The 

authors correctly predicted that causal attributions would be highest in the condition featuring a 

plausible mechanism (not placebo) and high treatment response rates. The use of correlation data 
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alone in causal judgment, as simulated by the placebo without a plausible mechanism, appears 

inadequate to infer a causal mechanism.  

Activity in several brain regions was observed when comparing the BOLD response 

corresponding to the different study conditions. First, the authors compared the consideration of 

plausible theories with implausible theories, regardless of treatment response rates. The left 

inferior frontal gyrus, right superior frontal gyrus, and primary visual cortex were all activated 

when contrasting participants’ consideration of plausible theories against their consideration of 

implausible ones. The authors suggest that this provides evidence for the involvement of working 

memory, executive control and visual attention mechanisms that have been previously attributed 

to these regions. Within each plausibility condition (medicine or placebo), different activations 

were also seen when directly contrasting the blocks with treatment response rates that are 

consistent or inconsistent with prior knowledge. Treatment response rates that are consistent with 

prior beliefs about the causal mechanism (treatment success after medicine) selectively engaged 

the left parahippocampal gyrus (PHG) and right caudate nucleus, whereas data conflicting with 

the plausible mechanism (taking medicine, but no response) selectively engaged the right 

cingulate gyrus, left dorsolateral prefrontal cortex (dlPFC) and left superior parietal lobe. 

Surprising treatment rates were generally disregarded in the implausible, or placebo, condition. 

The fact that medial temporal lobe structures (of which the PHG is one) are overwhelmingly 

implicated in the processing of episodic memory and semantic knowledge suggests that memory 

representations are retrieved when considering the plausibility of a theory; the error-monitoring 

and conflict-monitoring role often attributed to the cingulate cortex and dlPFC suggests that 

inconsistent data in the context of a plausible mechanism is manifested as a prediction error of 

sorts. Greater activation of the left hemisphere during conflicts between theory and evidence 
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provides support for the counterfactual or Causal Models approach to causal reasoning, and 

right-sided frontal activations while participants evaluated evidence consistent with an 

implausible theory could support an inhibitory or conflict-monitoring function under any of the 

theories of causal reasoning.  

It is worth noting here that the multiplicity of functions supported by a given structure or 

network in the brain renders the reverse inference approach to understanding brain function 

(inferring which functions or calculations are being used to complete a task on the basis of seeing 

a particular neural pattern of activation) less than exhaustive (Poldrack, 2006). The fact that a 

particular brain region has been associated with some known function in the past does not 

necessitate that it must be fulfilling the same function in all subsequent tasks that engage it; 

many brain regions have the ability to support more than one function. This is not a criticism 

unique to the methods reported here, and is instead a limitation inherent to exploratory analyses 

in cognitive neuroscience. Still, the reverse inference approach is a reasonable starting point for 

hypothesis development in a field as young as the cognitive neuroscience of causal reasoning. 

This is especially the case when dealing with such reliably observed function-mappings as 

medial temporal lobe memory processing, and executive control in dlPFC. 

 

4c. Social Causal Reasoning 

Social and emotional intelligence are burgeoning areas of study in the cognitive and 

neural sciences (Hilton, this volume). An open question concerning the structure of social 

intelligence and its relation to other constructs of human brain function is whether it is a unique 

set of faculties specific to processing social and emotional information, or simply an aspect of 

general intelligence that emerges when the content of representations being supported happens to 
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feature social and emotional information. Identifying the neural basis of social cognition will not 

end the debate, but the fact that some studies reveal an independent set of competencies 

specialized for social cognition suggests that there should be unique neural contributions to such 

competencies.  

Explaining and predicting the behaviors of others (and our own behaviors) are two 

processes requiring the representation and manipulation of causal relations involving stable 

attributes, intentional states and actions of people as they interact with one another. By asking 

people to make judgments about the actions of others while being imaged in an fMRI study, 

several studies have begun to separate the layers of social causal cognition into the types of 

information that are central to this type of reasoning beyond physical collisions or impersonal 

probabilistic events. 

One study examined the types of information that influence how we generate causal 

explanations for human behavior. People are presented with vignettes, and asked to draw one of 

four conclusions: the behavior was due to the main actor’s characteristics, the behavior was due 

to the characteristics of another person in the exchange, the behavior was due to impersonal 

contextual factors, or it was due to some combination of the three (Harris et al., 2005). 

According to the authors, people tend to make attribution judgments concerning an actor’s 

behavior on the basis of information about consensus (whether other people act similarly), 

distinctiveness (whether the behavior is specific to a particular object, or all members of a target 

category), and consistency (whether the behavior is reliably seen by this actor). People are also 

most likely to attribute an action to a person’s individual characteristics when consistency is 

high, but consensus and distinctiveness are low. For example, a kind gesture will be attributed to 

the personality of the actor if that person is routinely kind, especially in situations in which 
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others might not be, and if the person acts that way indiscriminately with respect to whom is 

receiving the kindness.  

In this experiment, brain activity was measured using fMRI while participants engaged in 

the attribution task. Activity in the superior temporal cortex (STS) was elevated in the 

combination of conditions evoking person-attribution (low consensus and distinctiveness, high 

consistency), when compared with the other combinations of conditions. Activity in the mPFC, 

but not STS, was also associated with social judgments not specific to a single person (high 

consensus, low distinctiveness, high consistency). The person-attribution condition also activated 

other regions in the brain (right middle temporal gyrus, right middle occipital gyrus, right 

precentral gyrus, right precuneus, left insula and left cingulate gyrus), but not uniquely when 

compared with other study stimulus conditions (e.g. low consensus, distinctiveness and 

consistency). The fact that right STS and left mPFC are preferentially engaged by social 

cognition and Theory of Mind test paradigms suggests that social causal reasoning converges 

with the ability to infer the mental states of others. The left-sided prefrontal activation is 

consistent with CM theory, but could conceivably be an artifact of the social component of 

reasoning rather than causal attribution per se. The right-sided temporal activation is consistent 

with the biological motion (or agency) and spatial reasoning aspects of FC theory, but could also 

hypothetically be part of a larger right-sided activation pattern characteristic of deductive 

reasoning, as seen in MM theory. Note that the areas that are activated together by multiple study 

conditions are primarily right-hemispheric, which would provide support for MM theory. 

Biased attribution of behavior on the basis of trying to serve some personal motivation 

also has a rich literature demonstrating exactly how error-prone and flexible human social 

judgment can be (Kunda, 1990). In Western cultures that assign a high value to individualistic 
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notions of self, we tend to erroneously attribute the actions of others to their dispositions while 

underweighting the influence of context; this was famously termed Fundamental Attribution 

Error, and it features prominently in the social psychology literature (Mason & Morris, 2010; 

Ross, 1977). Similarly, people often make overly-forgiving judgments of their own actions, 

taking credit for successes and blaming circumstance for failures and indiscretions, presumably 

to reduce dissonance and preserve a positive self-image (Greenberg et al., 1982).  

As with the other tendencies to construct causal models as dictated by our goals and 

contextual factors, the presence of attribution biases can be mapped to a network in the brain 

supporting its component parts: in this case, general causal reasoning and mechanisms for 

representing the assignment of value to particular explanations (Blackwood et al., 2003). By 

instructing participants to imagine themselves as the central actor in a series of social vignettes 

requiring an explanation for their own behaviors, it was possible to directly compare the neural 

correlates of self-attribution and other-attribution. Participants could choose from self-

attribution, other-attribution, or situational factors. Attributing actions to the self without a bias 

(so, including negative and positive actions) engaged the left lateral cerebellum, bilateral dorsal 

premotor cortex, and right lingual gyrus. External attribution (collapsing other person and 

impersonal contextual influences into a single category) engaged the left posterior superior 

temporal sulcus (STS). Comparing the activations associated with a self-serving bias with those 

associated with a self-deprecating bias revealed that favorable attributions activated the bilateral 

caudate nuclei, while a bias against self-serving attributions activated the left lateral OFC, right 

angular gyrus, and right middle temporal gyrus. The role of the STS in general external 

attribution is attributed to its role in inferring the mental or intentional states of others, and the 

role of premotor cortex, cerebellum and lingual gyrus in general self-attribution is linked to their 
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role in simulating one’s own actions and intention states in decision-making. The neural basis of 

these biases is of particular interest, because the very presence of a bias suggests some error in 

reasoning – a departure from rational thought that might help explain what makes humans 

unique. Activation of the caudate nucleus when making self-serving attributions suggests that 

representations of reward and motivation are involved. It is conceivable that multiple causal 

representations are concurrently constructed in this context: first, a plausible causal model 

linking self and situational factors to the behavior in consideration, and secondly, an implicit 

causal model linking the very inference being drawn to a particularly desirable emotion state, 

accounting for why the self-serving bias is even observed in the first place. The engagement of 

bilateral frontal, temporal and parietal lobes in any internal attribution is consistent with all three 

theories of causal reasoning. Engagement of the lingual gyrus and parietal lobes in particular, 

especially in contrasts not involving a major difference in visual processing, supports an iconic 

sensory modality-specific representation as suggested by FC theory. Bilateral caudate activation 

associated with a self-serving bias and a left frontal, right parietal activation in the self-

deprecating bias are not clearly supportive of any one theory of reasoning. The left-sided 

temporal engagement of external attribution when contrasted with all other attribution types 

appears consistent with CM theory, but only when considered on its own without the context of 

the other conditions. 

Evidence from causal reasoning experiments enrolling participants with brain damage 

serves to confirm several general trends in the neuroscience of social causal attribution. Between 

two otherwise-equivalent explanations for an event of interest, healthy adults will tend to favor 

the explanation featuring agency or intention on the part of some involved person. Accumulating 

evidence suggests that some patterns of brain damage are more likely than others to impair the 
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discrimination between intentional and unintentional acts in their causal power (Channon et al., 

2010). The study stimuli involved asking participants to read chains of events with two causes 

preceding some effect, with each cause varying from intentional or unintentional human acts to 

physical events not involving humans at all. Then, participants were asked to rate the causal 

power of each cause in the chain on a four-point likert scale, before using a similar scale to 

decide which cause was central to the effect. When comparing neurological patients with frontal 

damage (especially in the right hemisphere) to those with posterior damage and healthy control 

subjects, it appears that the frontally damaged group is still able to discern the two, but to a lesser 

extent than participants in the other groups. Specifically, right middle frontal gyrus, right inferior 

frontal gyrus, right ventrolateral PFC (vlPFC) and right insular cortex damage predicted a lesser 

extent of discrimination between intentional and unintentional human acts in their causal power. 

The findings provide evidence for an anterior right-hemisphere network that is critical to the 

discrimination between acts made intentionally or unintentionally. This pattern of lesion-

symptom mapping is consistent with the MM view of deductive inference as the driving force 

behind causal attribution. 

 

4d. Causal Judgment Versus Associative Learning 

The final element of causal judgment that has been studied using neuroscience methods is 

the distinction between associative learning mechanisms and causal reasoning. In integrating 

cognitive and behavioral psychology with the rich philosophical tradition on models of 

reasoning, connections can be drawn between such constructs as goal-directed behavior and 

causal representations; goal-directed behavior would be incoherent without some understanding 

of causality to predict the consequences of actions and adapt behavior accordingly. One hurdle to 
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explaining brain function and higher cognition in terms of causal representations is that 

associative learning mechanisms along the lines of classical conditioning can explain animal 

behavior that resembles an understanding of causal relations.  

Associative learning is based on tracking patterns of coincidence, and although it might 

engage semantic knowledge representations for the objects being associated, there should be no 

need to engage semantic knowledge to describe the nature of relations if causality truly exists as 

a privileged class of representation beyond associations (see LePelley, Griffiths, & Beesley, this 

volume, for associative theories of causality; Boddez, DeHouwer, & Beckers, this volume, for 

reasoning theory). To study the neural correlates engaged by causal judgment beyond the 

semantic knowledge network in the brain supporting associative judgment, one fMRI study 

instructed participants to judge the nature of a series of paired words while being scanned 

(Fenker et al., 2005; Satpute et al., 2005). The pairs of words varied as to whether they were 

causally linked (e.g. wind and erosion), non-causally associated (e.g. ring and emerald) or 

unrelated (e.g. eggs and liar). The study was divided into two block types that involved 

manipulating whether participants were instructed to judge each pair as causal versus unrelated, 

or associated versus unrelated. In the causal judgment condition, then, associated pairs would 

warrant a “no” response, while causal pairs in the associative condition would still warrant a 

“yes,” because causal links are simply one type of association in this context. Note that semantic 

knowledge is still required to make an associative judgment, but not what the authors call a “role 

binding” process assigning each word in the pair to either the cause or effect role. The neural 

correlates of this role binding process emerged when common features of causal and associative 

judgment were subtracted from those associated with causal judgment only. A mostly left-

hemisphere semantic processing network emerged when combining the two conditions: left 
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dorsolateral prefrontal cortex (dlPFC), left middle frontal gyrus, inferior frontal gyrus, superior 

parietal lobule, anterior cingulate gyrus, fusiform gyrus, and bilateral cerebellum. The neural 

correlates of causal reasoning contrasted against associative reasoning were much more focal, 

including a more anterior cluster in dlPFC and the right precuneus. Associative reasoning 

selectively engaged right superior temporal gyrus (STG) when contrasted with causal-only 

judgment.  

 

5. Discussion 

 At first glance, it is tempting to divide the psychological theories of reasoning according 

to the dissociable brain networks that they would predict as those supporting causal reasoning. 

Mental Models Theory emphasizes deduction over an abstract code of possible states of affairs, 

which generally engages a left-hemisphere fronto-parietal network. Causal Models Theory 

emphasizes inductive reasoning over an abstract network representing both statistical 

dependencies and generative mechanisms linking the variables in a set of counterfactual 

manipulations, which should engage a right-hemisphere frontal-temporal-parietal network. Force 

Composition Theory emphasizes iconic force vector representation, which could take the form of 

symbolic free-body diagrams or life-like representational simulations. This would suggest a 

network involving the superior parietal lobe, early perceptual processing streams in parietal and 

occipital lobes, and medial prefrontal cortex. 

 On the basis of the causal judgment neuroscience literature alone, there appears to be 

broad evidence for a frontal-temporal-parietal network, in support of a plurality of cognitive or 

psychological models. Particularly in the context of necessary and sufficient relations that are 

considered transitive according to formal logic (e.g. cause and enable), joining multiple relations 
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occurs using a deductive process by definition, which would suggest engagement of the right 

hemisphere, and the use of mental models. Uncertainty and probability could plausibly engage a 

separate, inductive mechanism of reasoning using Bayes Nets in the left hemisphere, or it could 

still proceed using a fundamentally deductive mechanism as suggested by Johnson-Laird and 

colleagues (Johnson-Laird, 1994). The divided tracking of multiple outcomes in a decision 

making task is also known to require bilateral representation in the brain (Charron & Koechlin, 

2010). Furthermore, reasoning about abstract causal relations like intention on the part of agents 

interacting with one another seem to support the face validity of a simulation approach to causal 

reasoning when modal and statistical network based representations do not quite capture the 

nature of the causal mechanism. Simplifying a series of abstract “forces” as a system to moves 

toward or away from an endstate is a plausible mechanism that may be engaged when necessary. 

In summary, there is most likely a plurality of modes of causal judgment and reasoning that are 

available. They may not all function at once, and may not even describe the same processes in 

the brain, but could rather be selectively recruited when a situation requires it. Reasoning about 

deterministic concepts – whether truly deterministic in nature or not – will likely involve 

deduction over mental models. Reasoning over probabilistic co-dependencies will likely involve 

induction over causal models. Reasoning about scenarios involving agency and complex 

instances of multiple preventions co-occurring will likely involve the use of iconic force 

representations. 

 

6. Questions for Future Study 

It is important to consider the questions that remain unanswered by the early research 

findings to date. In the carefully controlled environment of a psychology lab, there are a number 
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of features of causal reasoning that can be readily manipulated. Briefly, the difference between 

diagnostic and predictive reasoning has been the subject of some inquiry from a purely 

psychological standpoint (see Meder & Mayrhofer, this volume). Causal action simulations 

plausibly support predictive reasoning, for example. Diagnostic reasoning, however, appears to 

rely on similar information about causal dependencies and mechanisms, and it has been 

suggested that causal simulations cannot be run in reverse to generate explanations (Fernbach et 

al., 2011; Meder et al., 2014; Sloman & Lagnado, 2015); it remains undecided whether a series 

of alternate causal simulations can be run in the forward direction to decide on an explanatory 

inference (see Lombrozo, this volume, for a discussion on explanation), along the lines of the 

multiple models featured prominently in Mental Models Theory (Goldvarg & Johnson-Laird, 

2001) or the structural equations in Causal Models Theory (Sloman & Lagnado, 2015). Mapping 

this distinction to key events or networks in the brain will help answer an old question in 

cognitive neuroscience: is the reasoning process best described by a single, domain-general 

neural mechanism that is distinct from lower level information processing steps, or instead by 

separate domain-specific neural mechanisms that include the neural correlates of the perceptual 

processing dictated by the content of the relevant information (e.g. emotion processing, or visual 

spatial information). 

Another open question is to what extent other cognitive functions can be re-explained in 

terms of causality. Action representations supporting goal-directed behavior represent causal 

knowledge of the consequences of possible actions. The ability to construct coherent categories 

with meaningful boundaries relies on a basis of theoretical knowledge over and above any sort of 

feature combination or exemplar model; this “Theory Theory” is fundamentally causal in nature 

as well (Rehder, 2003; Rehder, this volume: a, b). More fundamental cognitive functions like 
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attention and memory may not be intrinsically causal, but they clearly support causal reasoning. 

The exact nature of this relationship in the brain remains to be seen. 

 

7. Conclusion 

 We return to the broader, theory-relevant questions left unanswered by prior research. 

Definitively confirming or rejecting the neuroscience predictions of descriptive models of causal 

reasoning will require neuroimaging studies that use identical materials to those used previously 

in behavioral experiments. Let us not forget that all models are, by definition, incomplete and 

therefore inaccurate. They involve simplifying assumptions on some domains to allow 

perturbations on other domains of interest to be studied. None of the descriptive models of causal 

reasoning is likely to encapsulate all of human causal reasoning – even if a unified descriptive 

theory should be developed. For this reason, the short-term goal of neuroimaging studies on 

causal reasoning should be to use experimental materials that resonate with the personal 

experiences that most people have in trying to predict the future and explain the past. And once 

we have more thoroughly mapped the causal judgment and complex causal reasoning to 

networks in the brain, we can begin to tackle the more daunting task of uniting all brain function 

together in a single code. Some have proposed that there is a common thread of information 

processing or representation types that unites the different elements of intelligence, reasoning 

and perception in the human brain (Christoff & Gabrieli, 2000; Duncan, 2001, 2010; Koechlin et 

al., 2003; Miller & Cohen, 2001; O’Reilly, 2010). We suggest that the common thread is the 

representation of causal relations, and eagerly await the next findings to confirm our hypothesis 

or situate it within a more all-encompassing framework.  
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