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Abstract: Neuroimaging research involves analyses of huge amounts of biological data that might or
might not be related with cognition. This relationship is usually approached using univariate methods,
and, therefore, correction methods are mandatory for reducing false positives. Nevertheless, the proba-
bility of false negatives is also increased. Multivariate frameworks have been proposed for helping to
alleviate this balance. Here we apply multivariate distance matrix regression for the simultaneous anal-
ysis of biological and cognitive data, namely, structural connections among 82 brain regions and sever-
al latent factors estimating cognitive performance. We tested whether cognitive differences predict
distances among individuals regarding their connectivity pattern. Beginning with 3,321 connections
among regions, the 36 edges better predicted by the individuals’ cognitive scores were selected. Cogni-
tive scores were related to connectivity distances in both the full (3,321) and reduced (36) connectivity
patterns. The selected edges connect regions distributed across the entire brain and the network
defined by these edges supports high-order cognitive processes such as (a) (fluid) executive control,
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(b) (crystallized) recognition, learning, and language processing, and (c) visuospatial processing. This
multivariate study suggests that one widespread, but limited number, of regions in the human brain,
supports high-level cognitive ability differences. Hum Brain Mapp 00:000–000, 2016. VC 2016 Wiley Periodicals, Inc.
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INTRODUCTION

Finding the brain correlates of individual differences in
cognitive ability using neuroimaging approaches and uni-
variate general lineal models raises several issues of interest,
due to the fact that (1) correction for multiple comparisons is
mandatory, (2) the number of simultaneous statistical tests
to correct for is regularly high, and (3) sample sizes are rela-
tively small [Bennet and Miller, 2010; Button et al., 2013; Vul
et al., 2009; Yarkoni, 2009; Yarkoni et al., 2010]. The statistical
test computed to discern if the variability in a given brain
property and a specific cognitive ability are associated might
lead to incorrect decisions. In this context, a false positive
(Type I error) decision is made when these two variables are
in fact not related and we decide they are. On the contrary, a
false negative (Type II error) decision happens when these
two variables are related and the decision is they are not.
The presence of false positives and false negatives in
neuroimaging findings is increased because the number of
statistical tests computed is usually huge. False discovery
rate (FDR), family wise error (FWE), or permutation tests are
procedures for controlling Type I errors [Chumbley and
Friston, 2009; Nichols, 2012]. However, the probability of
false negatives also increases. For reducing both the proba-
bility of false positives and false negatives, alternative, and
perhaps more efficient, approaches have been proposed
[Stelzer et al., 2014].

In this regard, and relying on multivariate frameworks
[Margulies et al., 2010; Shehzad et al. 2014] have applied
multivariate distance matrix regression (MDMR) [McArdle
and Anderson, 2001] to several functional neuroimaging
datasets. This approach allows the study of associations
between behavioral measures and brain measurement pro-
files, while reducing the number of assessments and the
multiple comparisons challenge. MDMR includes three
basic steps: (1) computing the distance between all pairs of
individuals (N) with respect to a given set of dependent
variables (e.g., brain connectivity pattern) for obtaining a
N 3 N distance matrix, (2) calculating a PseudoF statistic
to test the hypothesis that one or more regressor variables
(such as cognitive factors) have no relationship to varia-
tions in the distance or dissimilarity among individuals,
and (3) testing the significance of the PseudoF statistic
using simulation-based tests, such as permutation tests.

As noted by Shehzad et al. [2014] this procedure provides
some advantages: (a) several predictors can be analyzed
simultaneously, (b) the number of brain variables (e.g., num-
ber of brain connections) can be much larger than the

number of individuals in the sample, (c) variables of a differ-
ent nature (categorical, continuous) can be considered in the
same model, (d) there are few a-priori assumptions (e.g.,
regarding the data distribution) or decisions to make (such
as the number of dimensions to extract from the profile-
similarities multidimensional space), and (e) the approach
shows good statistical power.

Shehzad et al. [2014] suggested that the application of this
approach to structural connectivity would be worthwhile.
The current study applies MDMR for testing whether highly
similar individuals in their diffusion-based whole-brain
structural connectivity networks have also similar perfor-
mance in a set of cognitive latent factors (including fluid abili-
ty, crystallized ability, spatial ability, working memory
capacity, attention control, and processing speed). Also, we
investigated which specific links among pairs of cortical and
subcortical regions maximize the predictive power of the cog-
nitive domains included in the MDMR model. Importantly,
crossvalidation analyses were also conducted for testing the
stability of the observed findings excluding any possible
over-adjustment or circularity [Kriegeskorte et al., 2009].

In general, we expected that participants with similar
cognitive performance should show similar connectivity
patterns [low distance in the full set of connections], while
participants with different cognitive performance should
reveal different connectivity patterns. Also, the similarity
in a reduced set of links connecting cortical and subcorti-
cal regions previously related with cognitive performance
should maximize the predictive power of the cognitive
domains considered in the study.

METHOD

Participants

Ninety-four young healthy right-handed individuals par-
ticipated in the present study (53 women and 41 men; mean
age 5 20 years, SD 5 1.7). All were university undergraduate
paid volunteers. Participants completed a brief question-
naire including questions regarding medical or psychiatric
disorders, as well as substance intake, and none was exclud-
ed. Written informed consent was obtained in accordance
with regulations of Hospital Ruber Internacional (Madrid).
The local ethical committee approved the study.

MRI Data Acquisition

Participants were scanned on a General Electric Signa
3T magnetic resonance (MR) scanner, using a whole-body

r Ponsoda et al. r

r 2 r



radiofrequency coil for signal excitation, and a quadrature
8-channel coil for reception. 3D T1-weighted anatomical
brain MRI scans were acquired with a spoiled gradient
echo (SPGR) sequence with the following parameters: TR/
TE/PrepTime 5 6.8/3.1/750 ms; flip angle 128; 1 mm slice
thickness, a 288 3 288 acquisition matrix and a 24 cm
FOV. Diffusion weighted images (DWI) were acquired
with single-shot echo planar sequence with these parame-
ters: 24 cm FOV, TE/TR 78.2/11,000 ms, 96 3 96 acquisi-
tion matrix, 2.4 mm slice thickness, 1 image with no
diffusion sensitization (i.e., T2-weighted b0 image) and
15 DWI (b 5 1,000 s/mm2) with gradient directions uni-
formly distributed on the unit hemisphere, for unbiased
angular sampling of diffusion.

Structural Connectivity

We used Freesurfer (version 5.1.0) to segment each sub-
ject’s cortex in 68 anatomical cortical regions and 14 sub-
cortical regions [Fischl et al., 2004] (see Supporting
Information Table I for a description of these 82 regions).
DWI images were pre-processed using FMRIB’s diffusion
Toolbox (FDT) (Fig. 1). Correction for motion and geomet-
rical distortion due to Eddy currents was performed with
the eddycorrect tool in FDT, taking as reference image the
average of the two b0 volumes. Nonbrain tissue from the
average b0 image was removed using the FMRIB’s Brain
Extraction Toolbox, BET [Smith, 2002].

The obtained brain mask was applied to the remaining
DWI images. Diffusion Toolkit (DTK—http://www.
trackvis.org) was used to fit the diffusion tensor model
using a least squares approach. We employed TensorLine
Tractography (Lazar et al., 2003) to estimate the fiber
streamlines between the 82 regions. We generated ten
streamlines per voxel at random subvoxel locations, using
as stopping criteria a maximum curvature angle of 358

between consecutive steps and a lower threshold of frac-
tional anisotropy of 0.1 [Johansen-Berg et al., 2004]. Only
tracts with a length larger than 15 mm were retained.

Regional gray matter masks were dilated to add white
matter coverage. The dilation was performed using a
spherical morphological operator of one voxel radius, and
inter-regional overlapping was avoided. Structural connec-
tivity networks were represented as symmetric matrices
including normalized weights connecting each pair of
nodes in the parcellation scheme (82 nodes). Normalized
weights in the individual matrices were computed as the
number of streamlines connecting each pair of regions
divided by the total number of streamlines in the subject’s
matrix.

For avoiding false positives streamlines, we decided to
analyze highly consistent connections, acknowledging both
the limitations of the deterministic tractrography approach
used here and the limited number of directions of our
DWI data. In addition, for connections only present in less
than 50% of the subjects, even showing strong intersubject

variability, zeros for the remaining subjects will introduce
strong bias in MDMR analyses. To keep only the more
consistent connections (those present in a large percentage
of the sample) in the individual connectivity matrices, we
applied one-tailed (right) one-sample t tests to each edge
in the matrix across subjects. The null hypothesis tested
was: the relative number of streamlines connecting each
pair of ROIS is equal to zero [(number of streamlines link-
ing any two ROIs/total number of streamlines in the con-
nectivity matrix) 5 0]. We used the Bonferroni method to
correct for multiple comparisons. Thus, we divided the
selected threshold for significance (0.05) by 3,321 pairwise
connections [82 ROIs 3 (82 ROIs 2 1)/2]. Connections
with a corrected P value lower than 0.05 were set to zero
for all subjects. Using this approach, a connection (edge)
must be present in approx. more than 50 subjects to be
retained in the individual connectivity matrices. Addition-
ally, the 95% of the retained connections were present in a
least 75% of the subjects. So, even at the cost of removing
intersubject variability, MDMR analyses were run on these
corrected matrices.

Psychological Factors

Participants completed a set of cognitive ability tests
and computerized tasks. These tests and tasks tapped
three ability factors, namely, fluid reasoning (Gf), crystal-
lized ability (Gc), and spatial ability (Gv), along with
working memory capacity (WMC), attention control
(ATT), and processing speed (PS). Gf assesses the ability
for solving novel problems, whereas Gc involves the abili-
ty for solving academic types of declarative and procedur-
al problems [Cattell, 1971]. The construction, short-term
retention, and manipulation of mental images define Gv
[Lohman, 2000]. WMC involves the simultaneous and
online storage and processing of varied amounts of infor-
mation [Mart�ınez et al., 2011]. Attention allows the alloca-
tion of available mental resources [Baddeley, 2002] and the
present study considers the control of automatic responses.
Finally, reaction time tasks allow the measurement of PS
[Sheppard and Vernon, 2008]; participants completed sim-
ple verification tasks. All these cognitive factors were esti-
mated by three or more different measures each in order
to obtain representative scores at the latent-variable level.
Supporting Information Material provides a detailed
description of the measures tapping these cognitive fac-
tors, along with the computed confirmatory factor analysis
from which the latent scores were obtained.

Multivariate Distance Matrix Regression (MDMR)

This section provides a description of the steps followed
for multivariate distance matrix regression (MDMR) com-
putations. The function dissmfac of the library TraMineR
will be applied to obtain the MDMR results [Gabadinho &
Studer, 2011].
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Figure 1.

Brain structures defining the ROIs of interest (top panel, A 5 cortical regions and B 5 subcortical

regions). The bottom panel (C) depicts the analytic sequence for computing the connectivity

matrices. The T1-weighted MRI images were used for cortical and subcortical parcellation, whereas

diffusion MRI images were processed for computing diffusion tensor tractography. [Color figure can

be viewed at wileyonlinelibrary.com]
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Figure 2 summarizes the required analytic steps: (Step
1) Building individual whole-brain and reduced structural
connectivity profiles, (Step 2) calculation of the distance
matrix among individuals in the whole-brain and reduced
structural connectivity profiles, and (Step 3) MDMR analy-
sis setting as dependent variable the computed distance
matrices (whole-brain and reduced) and as independent
variables brain volume, age, and the six cognitive domains
[fluid reasoning (Gf), crystallized ability (Gc), and spatial
ability (Gv), along with working memory capacity (WMC),
attention control (ATT), and processing speed (PS)].

(Step 1) Building individual whole-brain and reduced
edge-based structural connectivity profiles. We started the
analyses with N 5 94 individuals assessed in a set of M 5 8
predictor variables (6 latent scores in the considered cogni-
tive domains and two additional variables: age and brain

volume 5 gray matter volume 1 white matter volume) and
a set of P 5 3,321 brain measures (all the pairwise connec-
tions among brain regions in the parcellation scheme; i.e.,
from node 1 to node 2, until node 81 to node 82). Therefore,
an NxP matrix can be built, where each row contains the
individual vector of whole brain structural pairwise connec-
tions. Hereafter, each of these vectors will be referred as
‘individual whole-brain connectivity profiles’.

Furthermore, we selected a subset of linkages or edges pre-
sumably relevant for cognitive performance. Univariate mul-
tiple regression was applied to select the specific pairwise
connections related to our set of predictors, as implemented
by Zapala and Schork [2006] for selecting group of genes
associated to the predictor variables of interest. Using
their approach, each of the 3,321 structural connections
among pair of regions was regressed on our predictor

Figure 2.

Summary of the analytic steps followed for the MDMR analyses.

Step 1: Building individual whole-brain (1A) and reduced (1B)

structural connectivity profiles. Step 2: Calculation of the dis-

tance matrix among individuals in the whole-brain and reduced

structural connectivity profiles. Step 3: Multivariate distance

matrix regression (MDMR) analysis setting as dependent variable

the computed distance matrices (whole-brain and reduced) and

as independent variables brain volume, age, and the six cognitive

domains [fluid reasoning (Gf), crystallized ability (Gc), and spatial

ability (Gv), along with working memory capacity (WMC), atten-

tion control (ATT), and processing speed (PS)]. [Color figure

can be viewed at wileyonlinelibrary.com]
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variables for retaining the edges where the F statistic was sig-
nificant (F > 2.73, with 8 and 85 degrees of freedom,
alpha 5 0.01). A total of S 5 36 node pairs (edges) fulfilled
this requirement (see Supporting Information Table III).
Then, a N 3 S (94 3 36) matrix was obtained, where each row
represented the individual vector of brain structural connec-
tions among the selected subset of pairwise connections.
Hereafter, each of these vectors will be referred as ‘individual
reduced connectivity profiles’.

(Step 2) Calculation of the distance matrix among indi-
viduals in the whole-brain and reduced structural connec-
tivity profiles. The distance between each pair of
individual connectivity profiles was obtained using the
Euclidean distance metric, resulting in a nonnegative value
that reveals how similar/different each pair of profiles is.
When both profiles are identical, the Euclidean distance is
zero. When they are not, the distance measure increases as
their dissimilarity does. For instance, two individuals with
an about zero distance in their whole-brain connectivity
profiles have about the same relative number of fibers
(over the total number of streamlines computed per sub-
ject) connecting the 82 nodes, and, therefore, share a simi-
lar connectivity pattern (or, more loosely, a similar brain
structure).

Two types of distance matrix (D), based on the whole-
brain (N 3 P) and reduced (N 3 S) profiles respectively,
were built. The first reflects the dissimilarity (Dij) between
each pair of individuals, i and j, in the vector representing
their whole-brain connectivity profiles. For instance, 4th row
or column represents the dissimilarity between the 4th
participant and the remaining N 2 1 (93) participants. The
second includes the intersubject dissimilarity on the subset
of linkages among brain regions that were significantly relat-
ed to the predictor variables. These two (DEuclidean 2 whole
brain and DEuclidean 2 reduced) N 3 N (94 3 94) distance
matrices were submitted to MDMR analysis.

(Step 3) MDMR analysis. MDMR was implemented for
assessing whether both, the individual whole-brain con-
nectivity profiles and reduced connectivity profiles, tended
to be more similar in individuals with similar cognitive
performance.

Firstly, a PseudoF statistic was computed for testing the
hypothesis that the M cognitive factors have no relation-
ship to variation in the distance or dissimilarity of the N
individuals observed in the N 3 N distance/dissimilarity
matrices built previously. This statistic is a generalization
of the F statistic calculated in multivariate multiple linear
regression analyses for testing the null hypothesis b 5 0. A
brief description of the MDMR methodology can be found
in the Supporting Information Material.

The MDMR analysis will provide which predictors (X) are
statistically significant along with their proportions of
explained variance (PseudoR2). So, for example, should X1 be
a significant predictor and its PseudoR2 5 k; the conclusion
would be that X1 explains about a k 3 100% of the variation
in the similarity of the individual connectivity profiles. The

statistical significance of each predictor was calculated using
permutation methods (1,000 permutations were run to built
the null distribution).

PseudoR2 values rest on the way they are computed.
When computing PseudoR2 for each independent variable
(IV), two strategies can be followed [Shaw and Mitchell-
Olds, 1993] for calculating the sums of squares (SS). The
type I SS is incremental: IVs are successively added to the
model and the contribution of each one is measured by
the SS increase that results when it is introduced. With
this method, the measured impact of each IV depends on the
order in which they are introduced. With the type II method,
the contribution of each IV is measured by the reduction of
SS that occurs when we drop it out from the full model.
Thus, the order in which the independent variables are
introduced in the model does not matter in the type II SS.
Therefore we decided to apply this latter strategy.

As summarized by Figure 2 (Step 3), the two 94 3 94
Euclidean-based distance matrices, DEuclidean 2 whole-brain
and DEuclidean 2 reduced, were submitted separately to
MDMR analysis as dependent variables. These were the eight
predictor variables (M) in the first model tested: fluid ability
(Gf), crystallized ability (Gc), spatial ability (Gv), working
memory capacity (WMC), attention control (AT), and process-
ing speed (PS) along with age and brain volume (gray plus
white matter volume). Also, we tested a second model, includ-
ing the predictors revealed as significant in Model 1. We did
this following the recommendation by Studer et al. [2011].

Validation of findings

1. Replicability of findings using Pearson’s correlation as
distance metric:

Different distance measures may change the pattern of
results when conducting MDMR analyses [Zapala and
Schork, 2006, 2012]. For instance, when comparing the pro-
files of two individuals, the normalized number of fibers
can be zero for some pairs of nodes, what does not affect
the Euclidean distance metric, but the Pearson correlation
observed between the two profiles. Therefore, we used
Pearson correlation to check if the observed findings were
robust beyond the distance metric used. Pearson correla-
tions among each pair of individual profiles (whole-brain
and reduced) were converted to a distance matrix through
formula [5] in Zapala and Schork [2006]. Then, the same
MDMR analyses performed for the Euclidean-based
whole-brain distances matrices were repeated.

2. Replicability of findings using node-based structural
connectivity profiles:

For assessing whether the way of computing the indi-
vidual brain connectivity profiles affected the results, a
vector of 82 values per subject (instead of the original
edge-based approach considering the pairwise connec-
tions (3,321) was computed. These values represented
each node’s strength obtained as the mean of the normal-
ized weights connecting each node with the remaining
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nodes in the parcellation scheme. Note that this latter
node-based approach for computing whole brain connec-
tivity profiles is closer to the strategy applied by Shehzad
et al. [2014]. Next, the Euclidean-based distance matrix
(DEuclidean 2 nodes) among individuals was computed
and the same MDMR analyses run for the original two
Euclidean-based distance matrices (DEuclidean 2 whole-
brain and DEuclidean 2 reduced) were repeated.

3. Crossvalidation:
Because of the approach followed in the current

study, we finally wondered if the consideration of the
same dataset for the successive analytic steps might dis-
tort the main findings [Kriegeskorte et al., 2009]. Specifi-
cally, the subset of links included in the reduced
connectivity profiles (36 edges, see Supporting Informa-
tion Table III) was selected using univariate multiple
regressions in the same sample where latter the MDMR
model was applied.

For addressing this crucial issue, we conducted two
crossvalidation studies to check whether our results are
replicated when different datasets are considered, exclud-
ing any possible overadjustment or circularity. The key
question to answer is: are the linkages nominated in the
reduced profile peculiar to the analyzed group of individ-
uals, and, therefore, largely unstable? As noted by Kriege-
skorte et al. [2009] distortion would be absent when
selection is “determined only by true effects in the data”.

Study 1

This study involved partitioning the original sample of
data into complementary subsets, performing the analysis
on one subset, and validating the analysis on the other
subset. Then, several rounds of cross-validation were per-
formed using 500 partitions. Specifically, the subjects in
the original sample (N 5 94) were randomly assigned to
subsamples S1 and S2 (N 5 47 each). Next, the procedure
used for obtaining the original individual reduced connec-
tivity profiles (3,321 multiple regressions, setting as inde-
pendent variables the M 5 8 predictors and as dependent
variables the normalized weight of each connection) was
implemented. Two reduced connectivity profiles were
obtained [NS1 3 LS1 (NS1 5 47 3 LS1 5 subset of significant
linkages after regressions in S1) and NS2 3 LS2

(NS2 5 47 3 LS2 5 subset of significant linkages after
regressions in S2]. Finally, two different strategies were
followed in the 500 partitions of the original sample:

Condition 1. The distance matrices built using the link-
ages nominated as reduced connectivity profile for S1
were set as dependent variable in the MDMR analysis for
S2 and vice versa. Because we were using the edges select-
ed from one subset of data for validating the findings in
the other, if there is no overadjustment or circularity, we
expected to find a high proportion (>0.05) of significant P
values for the predictors originally related to the reduced

connectivity profiles. Also, we verified if the specific link-
ages nominated as relevant for cognition in the original
sample (36 edges) were the same for the random subsam-
ples. In absence of circularity, the 36 edges initially select-
ed would be frequently included in the 1,000 reduced
profiles (proportion > 0.05).

Condition 2. The distance matrices built using the link-
ages nominated as reduced connectivity profile for S1
were set as dependent variable in the MDMR analysis and
the values for the scores in the eight predictors corre-
sponding to the subjects in S2 were included as indepen-
dent variables, and vice versa. Because we were using
random assignments for the independent variables, if there
is no overadjustment or circularity, we expected to find a
low proportion (0.05) of significant P values for the cogni-
tive predictors originally related to the reduced connectivi-
ty profiles.

Study 2

The complete group (N 5 94) was considered for select-
ing 1,000 samples and building the reduced connectivity
profiles following the same strategy employed originally.
Then, MDMR analyses were computed on each sample
after randomly permuting the predictors. Because there
was no a correspondence between the reduced connectivity
profiles and the predictors, we expected to find low values
in the PseudoF distribution for the cognitive predictors
originally related to the reduced connectivity profiles com-
pared to those obtained in the original sample.

RESULTS

Connectivity: Descriptive

More prominent nodes according to their strength
(mean of the normalized weights connecting each node
with the remaining nodes in the network) included bilater-
al precuneus, superior frontal, superior parietal, insula,
rostral middle frontal, lateral orbitofrontal, and putamen.
These results were in coherence with previous studies
nominating the main brain hubs of the brain structural
network [van den Heuvel and Sporns, 2011, 2013]. There
was a notable convergence in the nodes also having more
inter subject variability in connection strength, such as
bilateral superior parietal, precuneus, rostral middle fron-
tal, and lateral orbitofrontal.

Brain Structural Connectivity Profiles and

Cognitive Factors: MDMR Approach

Table I (Left, Model 1) shows that fluid, crystallized,
and spatial ability were statistically significant for predict-
ing the similarity among individuals in the whole-brain
connectivity profiles. The percentage of variance explained
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for each significant predictor, and for the total model was
modest (2.7% for fluid, 3.2% for crystallized, 2.2% for spa-
tial, and 9.8% for the total). A similar pattern emerged
when the analysis was computed using only the significant
predictors in Model 1 (i.e., Gf, Gc, and Gv). Note that in
this model, the P value for spatial ability was nonsignifi-
cant (P 5 0.108), but the total effect turned statistically sig-
nificant (P 5 0.033).

The same independent variables were still significant when
predicting the distances among the reduced connectivity pro-
files (Table I—Right, Model 1), plus brain volume and age.
Compared to Model 1 for the whole-brain connectivity profiles,
the percentage of variance explained by fluid, crystallized, and
spatial ability, as well as by the total model, increased (6.9, 6.9,
5.0, and 22.7% respectively). The analysis conducted on the sig-
nificant predictors confirmed these results (see Model 2 in Table
I—Right) suggesting remarkably stronger effects when the dis-
tance among reduced connectivity profiles (36 connections, see
Supporting Information Table III) was predicted.

Validation of findings

1. Replication across distance metrics
When Pearson correlation was used as distance metric

(Table II—left), the outputs from MDMR analyses hardly
differ from those shown in Table I. The differences
between the PseudoFs obtained with both metrics for the
same predictor were around 0 (the highest difference was
0.05).

2. Replication in the node-based structural connectivity
profiles

After applying MDMR to the 94 3 82 (participants by
nodes) node-based whole brain connectivity distance
matrices, all significant factors found for the edge-based
approach were replicated (see Table I). As observed in
Table II (right), significant predictors found for edge-
based and node-based whole brain connectivity profiles
were quite similar, except for ‘Total’ in Model 2 (which
was marginally significant). In short, the conclusions
achieved after analyzing the 3,321edge-based similarities
are substantially those found when the 82 nodes-based
analyses were considered.

3. Crossvalidation
The results obtained for the reduced connectivity pro-

files (Table I—right) were similar to those obtained when
over-adjustment was no longer present. Figure 3 displays
the findings from the two crossvalidation studies con-
ducted. As observed in Figure 3a, the proportion of models

TABLE I. MDMR results (PseudoF, PseudoR2, and P value) for the full set of independent variables [Model 1. Eight

predictors: brain volume, age, fluid reasoning (Gf), crystallized ability (Gc), and spatial ability (Gv), working

memory capacity (WMC), attention control (ATT), and processing speed (PS)] and only for the significant

predictors in Model 1 [Model 2. Three significant predictors (Gf, Gc, and Gv) when the whole-brain connectivity

profiles were set as dependent variable; and five predictors (brain volume, age, Gf, Gc, and Gv) when the reduced

connectivity profiles were set as dependent variable]

Predictor

Whole-brain profile Reduced profile

PseudoF PseudoR2 P value PseudoF PseudoR2 P value

Model 1
Brain volume 1.5958 0.0169 0.092 7.1730 0.0652 0.001**
Age 1.0712 0.0113 0.316 2.0409 0.0185 0.040*
Gf 2.5394 0.0269 0.014* 7.5708 0.0689 0.001**
Gc 3.0281 0.0321 0.005** 7.6015 0.0691 0.001**
Gv 2.0812 0.0220 0.025* 5.4767 0.0498 0.001**
WMC 0.6423 0.0068 0.869 1.2468 0.0113 0.271
ATT 0.5480 0.0058 0.962 1.5776 0.01434 0.130
PS 0.7000 0.0074 0.774 1.8798 0.0170 0.073
Total 1.1605 0.0984 0.169 3.1190 0.2269 0.001**

Model 2
Brain volume 5.9894 0.0560 0.001**
Age 2.0533 0.0192 0.041*
Gf 2.7894 0.0295 0.004** 8.3472 0.0781 0.001**
Gc 2.6296 0.0278 0.010* 6.1217 0.0573 0.001**
Gv 1.4267 0.0150 0.108 4.0102 0.0375 0.001**
Total 1.5144 0.0480 0.033* 3.7551 0.1758 0.001**

PseudoR2 was computed using a type II sum of squares strategy. The statistical significance of each predictor (P value) was calculated
using permutation methods (1,000 permutations were run to built the null distribution). They represent the proportion of times the sim-
ulated PseudoFs (computed on random datasets) exceed the empirical PseudoF.
*Significant at alpha 5 0.05.
**Significant at alpha 5 0.01.
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where brain volume, age, Gf, Gc and Gv resulted signifi-
cant was higher than 0.05. Note that this value (0.05) was
not included in their respective confidence intervals,
excepting age. Additionally, the frequency of inclusion for
the specific linkages included in the original reduced con-
nectivity profile [light blue in Fig. 3b; mean frequency 5

176 (min 5 80; max 5 422); proportion 5 176/1,000 5

0.176] was significantly higher than for the remaining link-
ages [dark blue in Fig. 3b; mean frequency 5 16 (min 5 1;
max 5 212); proportion 5 16/1,000 5 0.016] in the brain
network [Welch two sample t test 5 11.418; P 5 2.236e213;
H0 5 true difference in means is equal to 0]. Therefore,
when the edges selected from one subset of data were used
for validating the findings in the other, a high proportion
(>0.05) of significant P values was found for the predictors
originally related to the reduced connectivity profiles (see
Table I—right, Model 1). This denoted that similarity in the
reduced connectivity profiles was predicted by the same
cognitive factors (Gf, Gc, and Gv) when over-adjustment is
clearly absent. Also, we demonstrated that the selection of
the specific connections nominated as relevant for cogni-
tion (reduced connectivity profile, see Supporting Informa-
tion Table III) did not depend on the original sample
tested, since they significantly emerged as significant in the
1,000 datasets tested. However, it should be realized that
the frequencies for some connections are low (below 10%,
frequency< 100) and then their replicability may be low.

Finally, we observed that when the MDMR models were
computed in random datasets (Study 1, Condition 2, and
Study 2), the original significant predictors were no longer
significant. Specifically, in Study 1, Condition 2 (see Fig.
3a), we found a low proportion (<0.05) of models were
brain volume, Gf, Gc and Gv resulted significant. Also, as
demonstrated by Study 2, when there was no relationship
between the reduced connectivity profile and the indepen-
dent variables (since the data for the predictors was ran-
domly permuted), the PseudoF values for the predictors
originally related to the reduced connectivity profiles are
significantly higher than those obtained in random sam-
ples (see Fig. 3c,d), except for age.

Therefore, the crossvalidation studies support the stabili-
ty of the reported findings regarding the three cognitive
factors (Gf, Gc, and Gv) predicting the similarity among
subjects in their reduced connectivity profiles.

DISCUSION

Using a methodological approach aimed at alleviating
the multiple comparisons issue, namely, multivariate dis-
tance matrix regression (MDMR), here we have shown
that individuals with similar brain connectivity profiles
are also closer in their cognitive level as estimated by flu-
id, crystallized, and spatial ability latent factors. Further-
more, we identified a subset of 36 linkages connecting

TABLE II. Replication of findings using Pearson’s correlation as distance metric (left) and the node-based approach

for obtaining the connectivity profiles (right)

Predictor

Pearson correlation as distance metric Node-based connectivity profiles

PseudoF PseudoR2 P value PseudoF PseudoR2 P value

Model 1
Brain volume 1.6053 0.0170 0.087 1.8044 0.0190 0.073
Age 1.0195 0.0108 0.371 1.1559 0.0122 0.263
Gf 2.5522 0.0271 0.914* 2.7873 0.0294 0.015*
Gc 3.0124 0.0320 0.004** 3.4172 0.0361 0.007**
Gv 2.0844 0.0221 0.022* 2.5251 0.0266 0.023*
WMC 0.6711 0.0071 0.847 0.5909 0.0062 0.772
ATT 0.5689 0.0060 0.949 0.5348 0.0056 0.845
PS 0.7012 0.0983 0.779 0.7208 0.0076 0.645
Total 1.1582 0.0983 0.162 1.2218 0.1031 0.139

Model 2
Gf 2.7637 0.0292 0.003** 3.1572 0.0333 0.017*
Gc 2.5836 0.0273 0.010* 2.7396 0.0289 0.024*
Gv 1.4226 0.0151 0.107 1.6215 0.0171 0.138
Total 1.5022 0.0477 0.034* 1.6092 0.0509 0.068

MDMR results are shown (PseudoF, PseudoR2, and P value) for the full set of independent variables [Model 1. Eight predictors: brain
volume, age, fluid reasoning (Gf), crystallized ability (Gc), and spatial ability (Gv), working memory capacity (WMC), attention control
(ATT), and processing speed (PS)] and only for the significant predictors in Model 1 [Model 2. Three significant predictors (Gf, Gc, and
Gv)]. PseudoR2 was computed using a type II sum of squares strategy. The statistical significance of each predictor (P value) was calcu-
lated using permutation methods (1,000 permutations were run to built the null distribution). They represent the proportion of times
the simulated PseudoFs (computed on random datasets) exceed the empirical PseudoF.
*Significant at alpha 5 0.05.
**Significant at alpha 5 0.01.
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distributed brain regions that increased more than twice
the predictive power of cognitive performance on brain
profiles. Working memory capacity, attention, and process-
ing speed were not significantly related with similarities
among individuals in their brain connectivity profiles,
suggesting that the observed joint covariation between bio-
logical and psychological data cannot be simply general-
ized across cognitive domains. Finally, our findings were

replicated using (a) Pearson’s correlation as distance met-
ric, (b) a node-based approach instead of the original
edge-based approach, and (3) different crossvalidation
strategies for avoiding over adjustment or circularity.

Figure 4 depicts one schematic representation of the
core network (excluding isolated connections) identified in
the present study (the last round in Video 1 shows this
core network). The regions involved in this network have

Figure 3.

Main findings from the cross-validation studies: (a) Study1. Con-

ditions 1 and 2. MDMR Models shows the proportion of signifi-

cant P values (proportion of H0 rejections, P < 0.05) per

independent variable included in the MDMR models computed

in 1,000 subsets (N 5 47) of the original data. The confidence

interval (95%) of these proportions for each predictor is also

reported. (b) Study1. Condition 1: Specific Connections displays

the frequency of edge’s selection in the 1,000 subsets (N 5 47)

of the original data (Condition 1) for the specific linkages includ-

ed in the original reduced connectivity profile (light blue) and

for the remaining linkages (dark blue) in the brain network. (c)

Study 2. MDMR Models show the mean of the distribution and

confidence interval (95%) for the PseudoFs computed per pre-

dictor in 1,000 randomly permuted datasets (Study 2, N 5 94

each). It is also provided the PseudoF computed in the original

sample. (d) Study2. PseudoF distribution represents the distribu-

tion of the PseudoFs from Study 2 only for the significant pre-

dictors in the original model (brain volume, Age, Gf, Gc, and

Gv). The lines in the distribution are signaling the mean of the

distribution (dashed lines) and the original PseudoFs (solid lines).

[Color figure can be viewed at wileyonlinelibrary.com]

r Ponsoda et al. r

r 10 r

https://dl.dropboxusercontent.com/u/10862393/Video%201_MDMR.mp4
http://wileyonlinelibrary.com


been related with high-level cognition [Aminoff et al.,
2013] including executive control processes [Bedny et al.,
2012; Boisgueheneuc et al., 2012; Brabec et al., 2003; Bur-
gess et al., 2007; Elliot et al., 2000, Haupt et al., 2009;
Singh-Curry and Husain, 2009], language related process
[Ardila et al. 2014; Margulies and Petrides, 2013], memo-
ry/recognition processes [Grill-Spektor et al., 2001; Zald
et al., 2014], and visuospatial processing [Bird and Bur-
gess, 2008; Cavanna and Trimble, 2006, Zhang and Li,
2012]. The three cognitive abilities revealed as significantly
associated with brain connectivity profiles crucially require
cognitive control (fluid ability, Gf), language processing
(crystallized ability, Gc), and visuospatial processing (spa-
tial ability, Gv).

To what extent are the nodes/regions connected within
our network also relevant in previous research? Here we
followed one strict inductive (bottom-up) approach that
led to 36 connections implicating several regions distribut-
ed across the brain, including neocortical and subcortical
structures. These connections were both intrahemispheric
(seven on the left and eight in the right) and interhemi-
spheric (twenty-one).

Some regions connected within the identified network
are highlighted in the parieto-frontal integration theory of
intelligence (P-FIT) [Jung and Haier, 2007]. These regions,
thought to support individual differences in cognitive abil-
ity, fit the four processing stages considered by this theory:

(stage 1) the fusiform gyrus and the inferior parietal for
stage one, devoted to the processing of sensory informa-
tion; (stage 2) the precuneus for information integration
and abstraction in stage 2; (stage 3) the rostral middle
frontal gyrus and superior frontal gyrus for evaluation
cognitive processes in stage 3; and (stage 4) the caudate
anterior cingulate for response selection in stage four
[Pineda-Pardo et al., 2016]. Further P-FIT regions, namely,
the superior parietal, pars orbitalis, and pars triangularis,
were also identified in our reduced structural network.
Therefore, most of the regions comprised by this integra-
tive theory were found in the present study. Figure 5
depicts the set of regions connected within the identified
network (Video 1): green, yellow, orange, and red nodes
meet the four processing stages highlighted by the P-FIT
model that were also identified in the present study,
whereas gray nodes do not overlap P-FIT regions.

MDMR analyses conducted by Shehzad et al. [2014]
after their resting state fMRI data showed correlations
with intelligence differences (IQ) at the prefrontal cortex,
the anterior and posterior cingulate, the lingual gyrus, and
the supplemental motor area. Consistent with their results,
our findings comprise those cingulate regions and the lin-
gual gyrus as relevant nodes in the structural network.
Shehzad et al.’s resting state fMRI findings were generally
consistent with the P-FIT framework [Jung and Haier,
2007] and this is also the case for our structural

Figure 4.

Schematic representation of the nodes connected within the

main network identified in the present study. Red lines 5 right–

left connections; Green lines 5 anterior–posterior connections;

blue lines 5 top/bottom connections. The number of lines

represents mean pairwise connection’s strength (1 5 low,

2 5 medium, 3 5 large). [Color figure can be viewed at

wileyonlinelibrary.com]
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connectivity results. Nevertheless, discrepancies across
studies must be expected due to a host of issues such as
the considered analytic approaches, samples’ characteris-
tics, measurement of the phenotypes of interest, and so
forth [Colom and Thompson, 2011; Mart�ınez et al., 2015].
In this regard, one recent meta-analysis failed to found
any overlap between brain structural and functional corre-
lates of observed behavioral intelligence differences [Bas-
ten et al., 2015]. This result suggests that structural and
functional correlates might not be located in the same
brain regions. As underscored by Haier et al. [2009] stan-
dardization is strongly required for increasing comparabil-
ity across studies.

On the other hand, the putamen, hippocampus, and
superior parietal regions, along with the superior frontal
and precuneus have defined the so-called Rich Club [van
den Heuvel and Sporns, 2011, 2013]. In the present study,
the putamen was a node especially involved in the
reduced connectivity profile serving as way station. In this
regard, the results found by Burgaleta et al. [2014]
highlighted this subcortical structure for fluid and spatial
ability. Specifically, the relative enlargement of the puta-
men was positively related with these high-order cognitive

abilities. These researchers thought that the finding is sub-
stantiated by the acknowledged connection of this struc-
ture with the prefrontal cortex. We failed to detect direct
connections between the putamen and this latter region in
the brain, probably due to the nature of tracking methods
and the strategy used for avoiding false positive connec-
tions. However, the putamen was connected with the fron-
tal lobes indirectly through brain structures such as the
lateral occipital, fusiform gyrus, caudate, hippocampus,
superior temporal, lingual gyrus, or insula.

CONCLUSION

In conclusion, the findings reported in the present multi-
variate study suggest that one widespread, but limited
number of regions in the human brain support cognitive
ability differences. Specifically, individual differences in
three key latent cognitive factors estimating fluid, crystal-
lized, and spatial ability, predicted similarities among indi-
viduals regarding a structural network defined by 36
connections among a set of brain regions. Working memo-
ry capacity, attention control, and processing speed were

Figure 5.

The 36 connections maximizing the association with the cogni-

tive variables. The brain regions (nodes) connected by these 36

links are represented as spheres proportional in size to node’s

strength computed on the averaged brain network. The width

of the links is proportional to the mean weight of the connec-

tion. Green, yellow, orange, and red nodes represent brain

nodes highlighted by the P-FIT model also identified in the

present study. These colors denote the processing stages pro-

posed by this model, namely, processing of sensory information

(stage 1), integration (stage 3), evaluation (stage 3), and

response selection (stage 4). The nodes are identified in Sup-

porting Information Table III. [Color figure can be viewed at

wileyonlinelibrary.com]
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cognitive factors unrelated with the identified network.
The applied multivariate approach was useful for simpli-
fying a complex dataset defined by a huge number of can-
didate connections among 82 brain regions.

Although the reported crossvalidation studies reinforce
the reported results and, therefore, the main conclusion
we provide, acknowledging one replication requirement is
mandatory. The stability of the reported results is an
important concern. We found that individual differences
in three high-order cognitive factors are related to individ-
ual connectivity patterns (1) when the whole-brain and
reduced profiles are considered, (2) using a edge-based or
a node-based approach for building the connectivity pro-
files, (3) after the consideration of different distance mea-
sures (Euclidean or Pearson’s correlation), and (4) when
all or just the significant predictors are included in the
MDMR equation and in both the original and cross-
validation studies. Despite this, reservations must be not-
ed. Will the observed results remain after considering dif-
ferent cognitive and/or nodes measurements, samples
with other characteristics (such as, for instance, elderly), or
alternative MDMR strategies? All these germane questions
require substantive answers.
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