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21 Network Dynamics Theory of Human

Intelligence

Aki Nikolaidis and Aron K. Barbey

Introduction

For centuries the nature of human intelligence
has motivated considerable research and debate.
‘What mental abilities underlie intelligent behav-
ior and how do they contribute to the expres-
sion of genius and creativity? How are these
abilities shaped by the environment, cultivated
through experience, and represented within
the architecture of the human brain? While the
precision of scientific theories and methods for
investigating these questions has evolved over
the years, in recent decades advances in cogni-
tive neuroscience have afforded unprecedented
insight into the nature and mechanisms of
intelligence and creativity in the human brain.
Indeed, the advent of neuroimaging methods
has provided an opportunity to study the struc-
tural and functional organization of the brain as
a window into the architecture of these higher-
order cognitive capacities in the human mind.
Contemporary neurobiological theories have
applied neuroimaging methods to establish that
individual differences in general intelligence
can be localized to a specific network — the
frontoparietal network — whose functions are
largely believed to reflect intrinsic and stable
computational properties that enable core fac-
cts of both intelligence and creativity (Barbey,
Colom, & Grafman, 2013a; Barbey et al., 2012;
Beaty etal., 2014; Duncan, 2010; Jung & Haier,
2007). Recent evidence from network and
developmental neuroscience further demon-
strates that static networks undergo both short-
term dynamic fluctuations (Beaty, Benedek,

Kaufman, & Silvia, 2015; Byrge, Sporns, &
Smith, 2014; Deco, Jirsa, & Mclntosh, 2011),
and long-term changes over the developmen-
tal trajectory of the child and adolescent brain
(DiMartino et al., 2014; Hutchison & Morton,
2015), and therefore motivate new perspec-
tives about the dynamic (rather than static) and
system-wide (rather than singular) network
properties that underlie human intelligence and
creativity.

In this article, we introduce a cognitive neu-
roscience framework for understanding the

h 11

nature and r isms of human i

the Network Dynamics Theory, and review
evidence to elucidate how functional brain net-
works and their dynamic properties underlie
intelligence and its emergence over childhood
and adolescence. According to this framework,
intelligence emerges through the process of
actively selecting and creating information that
in turn modifies the brain’s internal structure
and dynamics (Figure 21.1). The development
of these internal dynamics over childhood and
adolescence contribute to the maturation of the
higher cognitive abilities associated with intel-
ligence (Byrge et al., 2014) and likely creativity.
We begin by surveying recent theoretical and
experimental advances in network neurosci-
ence that elucidate the static and dynamic brain
networks underlying human intelligence and
creativity, followed by a review of the neurode-
velopmental trajectory of intelligence, and how
the maturation of these networks contributes to
the formation of both intelligence and creativity
in adulthood.
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Figure 21.1 This figure represents how intrinsic and extrinsic forces drive the concurrent development
of brain networks and cognitive function (Byrge ct al., 2014). Structural brain networks (bluc) play a
constraining role on the intrinsic brain dynamics of functional networks (red), which in turn modulate
the structural networks. We see how this interaction between structural and functional dynamics leads
to differences in skill acquisition and response variation. The structure—function relationship constrains
the generation of output, motor output in this

se, although this could be generalized to cognitive skill
performance as well. Sensory inputs deliver error feedback to the brain and new dynamics emerge to
generate novel forms of activity. Novel forms of activity are generated and tested for relevant outcomes.
Over the course of development this interactive process guides the maturation of structural networks and
functional brain dynamics. For a color version of this figure, sec the color plate scction.

Information Processing Assumptions
for Intelligence in the Human Brain

or efficiency of the communication between
regions may therefore predict individual dif-
Network Dynamics Theory rests on six princi- ferences in task performance (Nikolaidis,
ples for information processing in the human Goatz, Smaragdis, & Kramer, 2015).

brain (Just & Varma, 2007; Newman & Just, 2. Each cortical area can perform multiple cog-
nitive functions, and conversely, many cog-
nitive functions are performed by more than
one area. The diverse functional role of brain

2005). Each of the six principles is well estab-
lished in the neuroscience literature and moti-
vates predictions about the nature and origins of
individual differences in general intelligence. regions is evident in literature indicating that

regions of the prefrontal cortex serve mul-

Intelligence is the product of the concur-
rent activity of multiple brain areas that
collaborate in a large-scale cortical network
(Barbey ct al., 2012; Gldscher et al., 2010).
Variation in the degree of synchronization

tiple cognitive functions (Barbey, Colom,
& Grafman, 2013b; Duncan, 2010; Miller
& Cohen, 2001), and even motor regions
play an important role in higher cognition
(Nikolaidis et al., 2017; Nikolaidis, Voss,
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Lee, Vo, & Kramer, 2014; Sabaté, Gonzalez,
& Rodriguez, 2004; Vakhtin, Ryman, Flores,
& Jung, 2014). Conversely, the capacity for
functional localization across multiple brain
regions is well established by the neurosci-
ence literature on cortical plasticity (for a
review, see Pascual-Leone, Amedi, Fregni,
& Merabet, 2005).

Each cortical area has a limited capacity of
computational resources, constraining its
activity. Evidence indicates, for example,
that activity within working memory net-
works increases with performance gains on
the N-Back task and plateaus or decreases
as the participant reaches the ceiling of
performance (Callicott et al., 1999; Jaeggi
et al., 2007). The limited capacity principle
has direct implications for individual differ-
ences in intelligence. First, it suggests that
the amount of resources available or the
resource capacity within the neural system
varies across individuals, which is supported
by evidence demonstrating that individual
differences in brain metabolism contribute
to cognitive performance (Jung et al., 1999,
2005; Nikolaidis et al.,, 2017; Paul et al.,
2016; Ross & Sachdev, 2004). Second, the
amount of resources required to perform a
task likely differs across individuals due to
variations in efficiency (Jacggi et al., 2007).
The topology of a large-scale cortical net-
work changes dynamically during cognition,
adapting itself to the functional demands
of the task and resource limitations of dif-
ferent cortical arcas (Byrge et al., 2014).
This principle is supported, for example,
by evidence demonstrating that cognitive
control networks shift their connectivity in
a task-dependent manner to dynamically
reconfigure brain networks for goal-directed
behavior (Cole et al., 2013; Miller & Cohen,
2001). These dynamic network features may
therefore contribute to individual differences
in goal-directed, intelligent, and creative
behavior.

5. The communications infrastructure that sup-
ports the transfer of information across mul-
tiple brain regions is also subject to resource
constraints (i.e., bandwidth limitations).
This principle is supported by a large body
of neuroscience evidence demonstrating that
white matter fiber tracts enable the integra-
tion of information across broadly distrib-
uted cortical networks and that the fidelity
of these pathways is critical to general intel-
ligence (Penke et al., 2012). Variation in the
degree or quality of the anatomical connec-
tions between processing regions may there-
fore contribute to individual differences in
task performance.

6. Neuroimaging measures of cortical activ-
ity (e.g., fMRI) provide an index of cogni-
tive workload and computational demand.
Extensive neuroscience evidence supports
this principle, demonstrating that the amount
of cortical activation within a given region
increases with computational demands,
for example, in sentence comprehension
(Roder, Stock, Neville, Bien, & Rosler,
2002), working memory (Braver, Cohen,
Nystrom, & Jonides, 1997), and mental
rotation tasks (Just, Carpenter, Maguire,
Diwadkar, & McMains, 2001).

Network Dynamics Theory of
Human Intelligence

The reviewed operating principles provide the
foundation for an interactive system of intrin-
sic connectivity networks, which together com-
prise the information processing architecture of
human intelligence. Analysis of patterns of func-
tional brain connectivity have revealed statistical
dependencies in neural activity across regions,
comprising core intrinsic connectivity networks
of the brain (see Figure 21.2; Power, Cohen,
et al., 2011), and indicates that these patterns
of brain connectivity can be used to predict per-
formance for both high- (Finn et al., 2015) and
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Figure 21.2 This figure summarizes recent work extracting reliable functional networks based on a large-scale meta-analysis of peaks of brain
activity for a wide range of motor, perceptual, and cognitive tasks (with permission from Dosenbach et al., 2006; Power & Petersen, 2013).

(a) The upper left figure represents a graph-theoretic embedding of the nodes. Similarity between nodes is represented by spatial distance, and
nodes are assigned to their corresponding network by color. The next two sections present the nodal and voxel-wise network distribution in both
hemispheres. The bottom panel (b, ¢) displays a voxel-wise distribution of the cognitive control networks: the frontal parietal network (yellow), the
cingulo-opercular network (purple), the dorsal attention network (green), the salience network (black), and the ventral attention network (teal). For
a color version of this figure, see the color plate section.
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low-level cognitive processes (Nikolaidis et al.,
2015). Functional brain networks are known to
fluctuate and evolve over short timescales and
are constrained by structural connectivity, which
modulate over longer ti (Byrge et al.,
2014; Deco et al., 2011). Critically, functional

networks do not relay neural signals, but instead

reflect neural communication within an under-
lying structural network (van den Heuvel &
Sporns, 2013). In this way, functional networks
are an important lens for understanding both
low-level processing and a high-level holistic
investigation of large-scale networks. Intrinsic
connectivity networks are thus characterized by
their micro- and macro-level topology. Micro-
level topological properties describe local fea-
tures of the network (e.g., the degree of a target
node; Table 21.1). Macro-level topological prop-
erties reflect the large-scale architecture and
global organization of the network (e.g., global
efficiency; Table 21.1).

Network Dynamics Theory proposes that
intelligence fundamentally depends on the
learnability of macro-level network structures
and dynamics (topological patterns) that emerge
from external input. According to this account,
intelligent, goal-directed behavior reflects the
learner’s capacity to utilize macro-level topo-
logical network patterns to process incoming
information. This prediction motivates a more
precise characterization of the large-scale cor-
tical network properties that underlie human
intelligence (from Information Processing
Assumption 1). Specifically, hubs are known to
play a central role in the formation of macro-
level network structures and mediate many of
the long-distance connections between brain
modules (Figure 21.3; van den Heuvel & Sporns,
2013). Hub regions, such as the bilateral pre-
cuneus, anterior and posterior cingulate cortex,
insular cortex, and superior frontal cortex, are
also known to form a strongly interconnected
network of regions (i.e., the rich club network;
Figure 21.3; van den Heuvel, Kahn, Goiii, &
Sporns, 2012). Given the range of network and

functional roles of these hubs (Information
Processing Assumption 2), their associated high
computational cost (Information Processing
Assumption 3), and high degree of interac-
tion (van den Heuvel et al., 2012), Network
Dynamics Theory proposes that the macro-level
topological properties of this rich club net-
work play a central role in human intelligence.
Specifically, such properties are functionally
valuable for integrative information processing
and adaptive behavior. For example, network
hubs in the frontoparietal network demonstrate
a significant degree of task-specific interactions
with a wide variety of cognitive and sensory
networks, modulating their connectivity and
supporting a diversity of cognitive tasks (Cole
et al., 2013). Furthermore, interactions between
rich club regions play an important role in
determining global efficiency of communica-
tion in a network, as demonstrated by evidence
indicating that almost 70% of the shortest paths
through a whole brain network pass through the
rich club (van den Heuvel et al., 2012). Given
the role of efficiency of network communica-
tion in cognition (Bullmore & Sporns, 2009;
Langeslag et al., 2013; Moussa et al., 2011), we
propose that the construction of the rich club
plays a primary role in the link between func-
tional brain networks and intelligence.

As a systematically constrained informa-
tion-processing organ that has evolved over
millennia to maximize computational capac-
ity toward reproductive success, the brain is
driven to perform complex computations with
a limited budget of resources (Gazzaniga,
2000; Guntiirkiin, 2005; Roth & Dicke, 2005).
Nevertheless, network hubs are sinks for the

brain’s metabolic and communication resources.
For example, the spatial distance of edges con-
necting hubs to the rest of the network (i.e., the
wiring cost) is greater than the distance of edges
connecting more peripheral nodes (i.e., hubs
have a high wiring cost) (van den Heuvel et al.,
2012). Rich club connections are comparatively
costly and their connectivity alone accounts for
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Table 21.1 This table summarizes some of the most important micro- and macro-level graph-theoretical
measurements of functional network construction (Bullmore & Bassett, 2011; Bullmore & Sporns, 2009,
Rubinov & Sporns, 2009). The micro measurements characterize the role of a given node in the network as
a whole, while the macro measurements describe various aspects of the construction of the whole network,
such as the speed of information transfer:

Micro-scale graph metrics

Node degree: The number of binary edges connected to a given node.

Node strength: The sum of the weighted edges connected to a given node.

Cluster coefficient: The ratio of the connectedness of the node’s neighbors when the node is and is not
present. High clustering coefficient suggests that the node’s neighbors are tightly connected to one
another.

Macro-scale graph metrics

Shortest path length: Describes the average shortest path between any two sets of points in a graph.
A good representation of the ease of information flow through a network.

Global efficiency: A metric of inverse distances between any two nodes that compliments the shortest
path length.

Small worldness: Measures the extent to which a graph d ates a ratio of
like organization. Commonly found in most complex networks.
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Figure 21.3 This figure displays a visual summary of basic network structure (van den Heuvel & Sporns,
2013). Each circle is a node and all the connections between them are labeled edges. Nodes of high or
low degree, represented as black and gray circles, arc those with edges connecting to many or few other
nodes, respectively. Modules are clusters of nodes with relatively high within-cluster connectivity and
low between-cluster connectivity. Among all nodes in the two graphs, the red nodes are designated as
hubs given their high-degree and graph centrality (Harriger, van den Heuvel, & Sporns, 2012). This
figure abstractly displays how normal and rich club nodes interact, demonstrating that the rich club nodes
not only have high degree, but they also serve as critical way points that enable efficient graph traversal
between distant nodes. For a color version of this figure, see the color plate section.
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40% of the total whole-brain communication
cost (van den Heuvel et al., 2012). As indicated
by Information Processing Assumption 2, each
brain region may perform multiple cognitive
functions, and this assists with the computational
and resource load on the brain. Network hubs are
regions that are tightly integrated into single or
multiple networks. Furthermore, hubs are known
to have higher rates of cerebral blood flow, aero-
bic glycolysis, and oxidative glucose metabolism
(Information Processing Assumption 3). This
combination of higher metabolic rate and longer
connection distance makes hubs biologically
very costly (Crossley et al., 2014). Thus, the high
value and high biological cost of hub regions
makes them particularly sensitive predictors of
individual differences in human intelligence.
For example, recent work investigating the role
of brain metabolism in cognition has demon-
strated that the concentration of NAA, a marker
of oxidative metabolism, is a strong predictor of
intelligence (Nikolaidis et al., 2017; Paul et al.,
2016). Given the brain’s resource constraints, and
the cost of using and maintaining these high wir-
ing cost regions, Network Dynamics Theory pro-
poses that the connectivity and activity of these
regions may play a particularly important role
in cognitive development and the emergence of
intelligence. Understanding how these rich club
nodes contribute to the development of executive
functions is therefore essential to characterizing
how the network architecture of the brain shapes
intelligence.

Cognitive Control Functions are
Central to Human Intelligence

Cognitive control is a hallmark of human intel-
ligence. The capacity to adaptively reorgan-
ize one’s thoughts and actions in accordance
with internal goals is an important marker for
the development of intelligence. According to
Network Dynamics Theory, human intelligence
reflects a self-organizing system that adaptively
engages multiple brain networks to support goal-
directed, purposeful behavior. To successfully

perform a particular task, mental operations
must be selected to achieve that specific task
out of an infinite number of possible tasks and
corresponding mental operations (Duncan,
2010). The process of selecting and implement-
ing behavior-guiding principles that enable goal
achievement is the central question of cognitive
control. At least three signals may be defined that
cognitive control regions should display across
a wide variety of tasks (Figure 21.4; Power &
Petersen, 2013). First, when a subject is given
a cue to begin a particular task, control regions
must send configuring signals to processors to
establish the correct processing strategy needed
for the task (the task set). A control region may
therefore display start-cue activity as the task set
is selected and instantiated. Second, for as long
as a subject continues to perform the task, the
task set must be maintained. A control region
may therefore display sustained activity during
task performance. Third, because successful
control needs to recognize errors in performance
and adjust task set accordingly, a control region
may display error-specific activity (Figure 21.4).

Specific intrinsic connectivity networks are
known to support cognitive control processes,
including the frontoparietal network and the
cingulo-opercular network (Dosenbach, Fair,
Cohen, Schlaggar, & Petersen, 2008). The
frontoparietal network supports moment-to-
moment task adjustments and is engaged dur-
ing start-cue and error-related activity (but does
not demonstrate sustained activity during task
set maintenance) (Dosenbach et al., 2008). The
cingulo-opercular network operates over longer
timescales and is recruited during start-cue,
crror-related, and sustained activity (Dosenbach
et al., 2008). Recent evidence further suggests
that cognitive control capacity may be supported
by whole-brain network properties. Studies have
shown that higher global efficiency of functional
brain networks is positively correlated with
better cognitive performance (Giessing, Thiel,
Alexander-Bloch, Patel, & Bullmore, 2013; van
den Heuvel, Stam, Kahn, & Hulshoff Pol, 2009),



(a) Start-cue (and possible end-cue): selection/instantiation of task set (b) Start-cue Error-related Sustained

l Error-related activity: l
adjustment of task set @
Anterior

insula

BOLD signal

Correct Correct Error Correct
trial trial trial trial

‘Sustained activity maintains task set
10 18 6 12 3 8

e e | _CSEE
* * + * * * z-score z-score z-score

Start Event Event Event Event Stop
cue cue

@ Cingulo-opercular
QO Fronto-parietal

©  pLpFc DLPFC aPFC  aPFC (d)

ant. thal.

ant. thal.

O

oz

Current Opinion in Neurobiology

Figure 21.4 This image represents the brain activity and network contributions to the three cognitive components of cognitive control: start cue,
error related, and sustained activity (Power & Petersen, 2013). (a) A hypothetical hemodynamic response function time course from a region

that elucidates the response for the start-cue, error-related, and sustained attention components of cognitive control. (b) fMRI activity maps that
display the distribution of activity sensitive to the start-cue, error signal, and sustained attention. (c) A graph that summarizes the connectivity of
the frontal parietal network (FPN, yellow) and the cingulo-opercular network (CON, purple). FPN: DLPFC-dosal lateral prefrontal cortex; IPL,
inferior parietal lobe; IPS, intra-parietal sulcus. CON: aPFC, anterior prefrontal cortex; al/fO, anterior insula/frontal operculum; aCC, anterior
cingulate cortex. (d) The anatomical mappings of the two cognitive control networks abstractly represented in (c). For a color version of this figure,
see the color plate section.
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and that cognitively more demanding tasks
may necessitate long-range integrative connec-
tions (Kitzbichler, Henson, Smith, Nathan, &
Bullmore, 2011). These data suggest that intel-
ligence depends on an integrative network topol-
ogy (Dehaene & Changeux, 2011). In particular,
the rich club of highly interconnected hub nodes,
many of which are in the frontoparictal network
(Cole et al., 2013), are known to support per-
formance in a variety of tasks, especially cog-
nitive control tasks demanding goal-directed
thought and behavior. This highlights the value
of hubs for the dynamic integrative processes
and adaptive behavior that are essential to cogni-
tive control (Crossley et al., 2013, 2014). More
recently, Cole and colleagues (2013) found that
the frontoparietal network demonstrates espe-
cially high global connectivity across a wide
variety of tasks. This finding suggests that global
connectivity of specific control regions may be
important for cognitive control capacity and
would allow for a mechanism by which specific
control regions can access and influence other
relevant networks (such as sensory—motor net-
works involved in task-relevant processing) to
adaptively monitor and regulate ongoing behav-
ior (Dehaene, Kerszberg, & Changeux, 1998;
Miller & Cohen, 2001).

Dynamic Variability of Functional Brain
Networks in Human Intelligence

‘While the topology of the brain’s structural con-
nectivity plays an important role in constraining
brain connectivity (Figure 21.1; Information
Processing Assumption 5), the interactions
between regions demonstrate significant vari-
ability over shorter time scales (Information
Processing Assumption 4) (Deco et al., 2011).
An emerging area of research in network neu-
roscience investigates how interactions between
cortical areas enable human intelligence (Cole
et al., 2013; Hampshire, Highfield, Parkin, &
Owen, 2012). This research indicates that the
interaction among brain regions is dynamic — the
system adaptively configures and reconfigures

itself in light of changes in processing demands
and inherent limitations in available computa-
tional resources. While regions with highly sta-
ble pairwise connectivity may demonstrate such
strong connectivity as the result of direct callosal
fiber connections (e.g., in the case in bilateral
homologies), many higher-order regions demon-
strate greater variability in functional connectiv-
ity and tend to be involved in a greater range of
functions (Deco et al., 2011).

On the basis of these findings, Network
Dynamics Theory proposes that dynamic vari-
ability in functional connectivity is critical for
the diverse range of processing involved in intel-
ligence, and recent work on dynamic brain con-
nectivity has shed light onto how these dynamic
networks relate to static functional connectiv-
ity networks and cognition. Variability in func-
tional interactions between nodes gives rise to
a large set of functional network states that are
strongly fluctuating over time, and which may
differ from commonly defined static networks
(Hutchison et al., 2013). In fact, well-defined
static networks, such as the default mode net-
work (DMN), actually pass through multiple
metastable states (Allen et al., 2014), and these
short-lived functional connectivity states are
reproducible across subjects (Allen et al., 2014;
Liu, Chang, & Duyn, 2013). The frontoparietal
network is made flexible through its composi-
tion of hubs that rapidly modulate their pattern
of global functional connectivity according to
task demands (Cole et al., 2013). This work also
demonstrates the strong relationship between the
functional role of hubs and their participation in
dynamic brain states; compared to other net-
works, the frontoparictal network was found to
demonstrate the greatest dynamic flexibility, as
it is preferentially engaged in a wide variety of
64 different motor, cognitive, language, visual,
and auditory tasks (Cole et al., 2013).

While the contributions of intrinsic func-
tional connectivity networks have been widely
established in their associations with cogni-
tion, research into how dynamic functional
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connectivity states contribute to cognition and
intelligence is still developing. Recent work
has demonstrated that aspects of these dynamic
brain states are relevant to some aspects of cog-
nition (Sadaghiani, Hesselmann, Friston, &
Kleinschmidt, 2010; Thompson et al., 2013)
in both healthy populations and a wide range
of psychiatric and neurological
such as schizophrenia (Sakoglu et al., 2010),

disorders

Alzheimer’s dementia (Jones et al., 2012),
and Autism Spectrum Disorders (Starck et al.,
2012). For example, some studies have shown
that increases in DMN activity predicted error
commission (Eichele et al., 2008), as well
as temporary lapses in attention (Weissman,
Roberts, Visscher, & Woldorff, 2006), which is
supported by the countervailing role of the cin-
gulo-opercular network in dynamic regulation
of the DMN and sustained attention (Uddin,
Kelly, Biswal, Castellanos, & Milham, 2009).
Researchers have found that intraindividual dif-
ferences in pre-stimulus network anticorrelation
between the DMN and the frontoparietal net-
work was strongly predictive of both response
time (Thompson et al., 2013) and response time
variability (Kelly, Uddin, Biswal, Castellanos, &
Milham, 2008). Other work has demonstrated
that variability in the connectivity of the DMN
is iated with more i of off-task
mind wandering (Kucyi & Davis, 2014). More
recently, researchers found that while perform-
ing a cognitive control task, metastable states
with strong links to cognitive control and vis-
ual networks increased in frequency relative
to rest, while states linked to drowsiness and

inattention decreased in frequency relative to
rest (Hutchison & Morton, 2015). These find-
ings suggest that dynamic states that emerge
from intrinsic brain activity play a critical role
in the attention and cognitive control processing
that contributes to intelligence. We propose that
the dynamic states that modulate these varied
attention and cognitive control processes are dir-
cctly linked to the cognitive procedures deployed
while solving complex problems exemplified by

either (i) inductive reasoning and fluid intelli-
gence or (ii) divergent thinking and creativity.

Overlapping Roles for Functional Brain

Networks in Intelligence and Creativity

Traditional conceptualizations of the arts and
sciences represented creativity and intelligence
as scparate domains, and the dominant trend
in creativity research has supported this pos-
ition, with meta-analyses showing very weak
correlations between intelligence and creativity
(Kim, 2005). More recently, studies have dem-
onstrated strong associations between creativ-
ity and intelligence (Plucker & Kaufman, 2011;
SiiB3, Oberauer, Wittmann, Wilhelm, & Schulze,
2002). In most modern psychology research cre-
ativity is measured by the family of divergent
thinking tasks (e.g., to generate uncommon uses
of a “brick™), and although this is an important
metric of creativity, most common psychometric
methods of analyzing divergent thinking suffer
from statistical constraints of unstable metrics of
creativity and high collinearity of item unique-
ness with item fluency (Nusbaum & Silvia,
2011). More recently, studies have investigated
new ways of measuring creativity in divergent
thinking tasks that do not suffer from these issues
or sacrifice statistical power (Nusbaum & Silvia,
2011), and these analyses have revealed a much
stronger and direct association between intelli-
gence, executive function, and creativity. For
example, extensive evidence demonstrates that a
range of executive functions are tied to creativ-
ity, such as working memory capacity (De Dreu,
Nijstad, Baas, Wolsink, & Roskes, 2012; St
et al., 2002), and both updating (Benedek, Jauk,
Sommer, Arendasy, & Neubauer, 2014), and
inhibition (Benedek, Franz, Heene, & Neubauer,
2012; Benedek et al., 2014). Furthermore, psy-
chometric studies have demonstrated that general
intelligence (SiiB et al., 2002) and fluid intel-
ligence are strongly coupled with performance
in measurements of creativity such as divergent
thinking originality (S et al., 2002), emo-
tional metaphor creation (Silvia & Beaty, 2012),
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ideation originality (Benedek et al., 2012), and
creative metaphor generation (Beaty & Silvia,
2013). These psychometric accounts are further
buffeted by contemporary neuroimaging stud-
ies that detail further the mechanistic overlap
between executive function and creativity.
Recent work has demonstrated that creativity
and intelligence share an extensive array of over-
lapping neural correlates that center around the
interaction between the default mode and fron-
toparietal networks (Jung, Mead, Carrasco, &
Flores, 2013). The DMN plays an important role
in internally generated thoughts that are both
task-relevant and task-irrelevant, such as self-
referential thought, autobiographical thoughts
about the past and future (Andrews-Hanna,
Smallwood, & Spreng, 2014; Christoff, Irving,
Fox, Spreng, & Andrews-Hanna, 2016). Regions
of the DMN are known to interact with hubs of the
salience network, such as the anterior insula, and
the frontoparietal network, such as the dorsolat-
eral prefrontal cortex (DLPFC). These executive
networks are thought to play both a facilitating
and constraining role on the DMN during crea-
tive tasks, for example, by engaging cognitive
control processes that prevent interference from
irrelevant self-generated items (Benedek et al.,
2012). Beaty and colleagues found that high
divergent thinking was explained by greater
connectivity between the left inferior frontal
gyrus and the entire DMN, and the right inferior
frontal gyrus (IFG) showed greater connectivity
to both the bilateral inferior parietal cortex and
left DLPFC in the high creativity group as well
(Beaty et al., 2014). In follow-up work, Beaty
and colleagues found that global functional net-
work efficiency was positively correlated with
composite creativity scores, suggesting that
greater efficiency of information transfer across
networks is an important reflection of individual
differences in creativity (Beaty et al., 2015). The
importance of network connectivity in creativity
has been underscored by studies demonstrating
that white matter volume of the corpus callosum
is positively correlated with creativity in the

Torrance Tests of Creative Thinking, which may
suggest that enhanced hemispheric specializa-
tion supports creative ideation through greater
allowance for separate hemispheric processing
(Moore et al., 2009). Furthermore, in a recent
voxel-based lesion-symptom mapping study,
researchers demonstrated that intelligence reli-
ably predicted cognitive flexibility, that perfor-
mance in these two factors both were dependent
on a shared set of frontal, temporal, and parietal
regions and white matter tracts (Barbey, Colom,
& Grafman, 2013). More recently, intelligence
researchers have begun experimentally probing
the regions and networks involved in creativity.
For example, one study found that in a divergent
thinking task, cues to promote creative thought
were associated with increased activity in the
left frontopolar cortex and connectivity to the
ACC (anterior cingulate cortex) and right fron-
topolar cortex (Green, Cohen, Raab, Yedibalian,
& Gray, 2015). A creativity intervention study in
which subjects were trained in divergent thinking
found post-training behavioral improvements in
response originality and fluency in untrained
divergent thinking tasks (Sun et al, 2016).
Furthermore, these changes were mirrored by
group-level increases (post > pre) in functional
activation in the bilateral dorsal ACC, DLPFC,
and left inferior parietal lobe during an alterna-
tive uses task in the MRI scanner. This suggests
that improving creative ability through training
is both possible and dependent on regions of the
brain critical to both cognitive control functions
and self-generated thought.

Intelligence is thought to emerge through a
dynamic hierarchical interaction between low
level sensory regions, multimodal association
regions in the parictal lobe, and frontal executive
function regions such as the ACC and DLPFC
(Jung & Haier, 2007). We propose that creativ-
ity emerges through a similar pattern of dynamic
hierarchical networks, with the default mode
network playing a central role in generating a
stream of internal stimuli that are fed forward to
the parietal and frontal regions for abstraction,
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comparison, and response selection. Recent
experimental work has provided the first evi-
dence for such dynamic reconfiguration between
the DMN, FPN, and salience networks over the
course of divergent thinking processing (Beaty
et al, 2015). In this experiment, the authors
split the time course of response to a divergent
thinking trial into five sections, and tested the
dynamics of connectivity of seeds in the PCC,
DLPFC, and precuneus. Their results suggest
that at the beginning of the divergent thinking
trial, the PCC first interacts with the bilateral
insula, which is supported by prior work dem-
onstrating the interaction between the insula and
DMN (Uddin et al., 2009). The PCC continues
by maintaining this connection and developing
greater connectivity to frontal executive regions
such as the DLPFC and ACC. Unlike the PCC,
the right DLPFC does not demonstrate any ini-
tial changes in connectivity, but then increases
in connectivity to the right PCC and inferior par-
ictal lobe, which are both regions of the DMN.
These results suggest that as is the case with
executive function, in creativity the interaction
between the salience network and the DMN
is initially important, but in tests of creativity
there are time-delayed increases in DMN-FPN
coherence as the trial progresses, pointing to
important similarities and contrasts between the
dynamic network processing of intelligence and
creativity.

Collectively these results demonstrate that
intelligence and creativity share significant
overlapping variance both psychometrically
and mechanistically. Creativity, like many
other higher cognitive attributes, is associated
with intelligence at the level of both static and
dynamic networks. In some sense, this is unsur-
prising given that human creativity and intel-
ligence are regarded as evolutionarily highly
advantageous abilities that would likely have
emerged concurrently during human evolution.
While these slow changes may have contrib-
uted to the emergence of intelligence and cre-
ativity over millennia, modern-day children and

adolescents provide us with other excellent mod-
els for the development of these higher cognitive
functions. Understanding how these functional
brain networks develop over the lifespan will
give us important insights into the nature of cre-
ativity and intelligence.

Neurodevelopmental Processes
for Human Intelligence

Cognitive development during early childhood
is dominated by critical periods of sensory and
motor development while higher cognitive func-
tions are largely undeveloped. The cognitive
abilities most crucial to intelligence, such as
cognitive control, fluid reasoning, and working
memory, undergo substantial development dur-
ing adolescence (Asato, Sweeney, & Luna, 2006;
Huizinga, Dolan, & van der Molen, 2006). The
onset of puberty leads to a cascade of hormonal
changes that contribute to concurrent maturation
of cognitive ability and brain structure (Crone &
Dahl, 2012). This sudden onset manifests as an
apparentimbalance in the development of regula-
tory competence to manage increases in arousal.
In early and middle adolescence, pubertal onset
enhances emotional arousal, reward sensitivity,
and sensation-seeking, and during middle ado-
lescence low regulation of affect and cognition
leads to vulnerability to risk-taking and problem
behavior (Steinberg, 2005). By late adolescence,
regulatory competence is increased and risks are
considerably lessened. Overall, adolescent cog-
nitive development is marked by the creation
of greater ability for self-directed and regulated
cognition (i.e., cognitive control functions).
Individuals show improvements in the capacity
and efficiency of information processing as evi-
denced by increased reasoning ability. By late
adolescence, individuals have already become
more capable of complex, planned, abstract,
hypothetical, and multidimensional thinking
(Keating, Lerner, & Steinberg, 2004). The devel-
opment of these cognitive abilities is central to
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the emergence of intelligence, and therefore the
maturational trajectory of the associated brain
regions, networks, and dynamic metastable
states are critical markers not only of the devel-
opment of adolescent cognition, but also of the
emergence of intelligence specifically.

Brain development is strongly tied to a
wide range of factors, including an organism’s
Black,
& Wallace, 1987), family, peers, nutrition,

physical environment (Greenough,
pubertal hormones, and education (Graber &
Petersen, 1991). Intellectual stimulation during
the first 12-30 months of life has a significant
impact on a child’s future IQ (Carew, 1987), and
types of motor and visual stimulation support
development in object memory, discrimination,
and recognition (Ruff, 1989; Schwarzer, 2014;
Soska & Johnson, 2013; Spear, 2000). While
network hubs are closely involved in cognitive
performance, they likely play a critical role in
facilitating development as well. Recent work
has found that the rich club organization of the
brain emerges very early during development,
at only the 30th week of gestation, followed by
the integration of these rich club hubs with the
rest of the brain (Ball et al., 2014). Furthermore,
extensive changes in the size, myelination, and
packing density of white matter axons during
development contribute to an improvement in
the efficacy of network communications (Paus,
2005; Paus et al., 1999). Thus, the Network
Dynamics Theory proposes that the develop-
ment of white matter tracts assists in alleviat-
ing resource constraints on the communications
infrastructure of child and adolescent brain net-
works, thereby enabling the concurrent emer-
gence of adult phenotypic functional networks
for intelligence.

While foundational intellectual develop-
ment occurs during the first years of life,
adolescence is the time period during which
increases in most cognitive abilities occur
(Graber & Petersen, 1991; Levin et al., 1991;
Spear, 2000). Coincidentally, this is also the
time period during which the PFC matures to

its adult volume, with the sensorimotor, par-
ietal, and temporal cortices having already
matured (Casey, Tottenham, Liston, & Durston,
2005). In adults the PFC plays a critical role
in executive function and intelligence (Barbey
et al., 2012; Barbey, Colom, Paul, & Grafman,
2013b; Kane & Engle, 2002; Todd & Marois,
2005), and individual differences in the devel-
opment of this brain region have been linked
to differences in executive function in chil-
dren, further supporting the role of the PFC
in the development of intelligence (Casey
et al., 1997). Prefrontal regions are underdevel-
oped during childhood, yet during this time
they play an important role in cognitive abilities
central to intelligence, such as cognitive con-
trol and working memory (Bunge, Dudukovic,
Thomason, Vaidya, & Gabrieli, 2002; Durston,
Thomas, Yang, Zimmerman, & Casey, 2002;
Klingberg, Forssberg, & Westerberg, 2002).
During  childhood,
increase in dendritic spine density, a critical
marker of potential plasticity (Hering & Sheng,
2001), and this density peaks during human
adolescence, reaching levels two- or threefold
greater than adult levels (Petanjek et al., 2011).

the prefrontal cortices

The frontoparietal network, which has been
broadly implicated in cognitive control, work-
ing memory, and intelligence (Dosenbach et al.,
2008; Jung & Haier, 2007; Nagy, Westerberg, &
Klingberg, 2004), undergoes both gray matter
and white matter maturation concurrently dur-
ing development (Olesen, Nagy, Westerberg, &
Klingberg, 2003). The maturation of this brain
network parallels the development of intelli-
gence as well, for during adolescence the long-
range connections in this network strengthen
and short-range connections weaken as it
matures toward its adult form (Fair et al., 2007).
Furthermore, recent evidence has shown that
adolescents also demonstrate greatest cortical
development and white matter myelination in
network hubs, which are critical for managing
both internal and between network dynamics
(Whitaker et al., 2016).
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As static networks demonstrate long-term
changes over time during adolescence associ-
ated with development of intelligence, long-
term changes in dynamic brain networks
serve as important markers of developmental
trajectories as well (DiMartino et al., 2014;
Hutchison & Morton, 2015); furthermore, the
Network Dynamics Theory proposes that the
dynamic connectome should be even more
sensitive to developmental changes in intelli-
gence than static networks. The neuroscience
community has become increasingly interested
in analyzing and characterizing brain dynam-
ics in younger populations, and recent work by
Hutchison and Morton (2015) has revealed sev-
eral insightful differences between the dynamic
connectomes of children and adults. In a study
of 9- to 32-year-olds, age was negatively asso-
ciated with the number of brain states occu-
pied during rest, meaning that adults switch
between a more restricted set of brain states
than children and teens. Furthermore, age was
positively associated with the number of tran-
sitions between states and lower intertransition
intervals, meaning that adults not only switched
between brain states more frequently, but when
they began a transition they also completed it
more rapidly. Given that the cognitive control
networks are critical for switching between
functional networks (Uddin, Supekar, Ryali, &
Menon, 2011), and these cognitive control net-
works are less developed in children and ado-
lescents (Power, Barnes, Snyder, Schlaggar, &
Petersen, 2012; Supekar, Musen, & Menon,
2009), the Network Dynamics Theory pro-
poses that these cognitive control metastable
states are heavily involved in intelligence for
their ability to regulate other brain networks,
therefore allowing for more rapid information
access, manipulation, and integration. This
position is further supported by recent find-
ings that adults demonstrate greater variability
of network-to-network coupling compared to
children and adolescents, and that this diffe-
rence is most pronounced in cognitive control

networks (Cole et al., 2013; Hutchison &
Morton, 2015). We propose that adults are thus
capable of using cognitive control networks in
a greater variety of ways, and increasing effi-
ciency of use may support the developmental
emergence of higher cognitive functions that
contribute to intelligence.

Conclusions

Intelligence emerges through a set of extrin-
sically and intrinsically driven interactions.
Dynamic brain networks interact with the extrin-
sic environment, which in turn drives the devel-
opment of cognitive ability. Simultaneously,
intrinsically driven developmental trajectories
drive maturation of static brain networks and
related dynamic network metastable states
(Figure 21.1). We predict that while individ-
ual differences in static brain networks shed
light on the development of intelligence from
childhood to adulthood, concomitant changes
in dynamic brain network metastable states
should demonstrate even greater sensitivity to
the development of cognitive abilities asso-
ciated with both intelligence and creativity.
Specifically, Network Dynamics Theory pre-
dicts that increasing network ecfficiency and
modularity in dynamic states of the rich club
and frontoparietal networks over development
should mirror the improvements in executive
and other higher cognitive functions associ-
ated with intelligence. Furthermore, we predict
that as children and teens mature, the increas-
ing speed of switching between dynamic meta-
stable brain states should be a critical marker
for the development of intelligence and cre-
ativity (DiMartino et al., 2014; Hutchison &
Morton, 2015).

Network Dynamics Theory has import-
ant implications for both the study of intelli-
gence and the efforts underway to improve
intelligence and creativity (Table 21.2). Given
that intelligence improves via development of
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Table 21.2 This table summarizes the key predictions made by the Network Dynamics Theory of
intelligence regarding the role of specific brain networks and development in intelligence. ACC,
anterior cingulate cortex; DLPFC, dorsolateral prefrontal cortex.

Predictions of the Network Dynamics Theory

. Adults have a greater capacity to use cognitive control networks to support a varicty of cognitive tasks

(relative to adolescents), and this increasing cfficiency of use supports the developmental emergence of
higher cognitive functions that contribute to intclligence

I

11

changes in i than classic

properties

w

The dynamic connectome provides a more sensitive and specific marker of developmental
hes that focus on a single network or static network

Both intelligence and creativity depend on the emergence of macro-level network patterns, such

as global efficiency and rapid metastable state switching, in response to both external and internal

stimuli

b

human intelligence

v

The maturation of macro-level topological properties of the rich club network plays a central role in

Dynamic brain states that modulate cognitive control support intelligence and creativity through their

guidance of the cognitive procedures deployed while solving complex problems

=N

. The increase in frontoparictal network efficiency and modularity over development are predicted

to mirror the improvements in executive and other higher cognitive functions associated with

intelligence

=

Interventions aimed at training exccutive functions during adolescence are predicted to change the

dynamic interactions between the frontoparictal and default mode networks that accompany the

development of intelligence and creativity
dol

=3

will enable do:

. Training on executive function tasks during

| learning

strategics that may be applicd in new scenarios. For example, training that encourages adolescents to
engage in faster switching between brain states may be more likely to demonstrate transfer across a

broad spectrum of cognitive control tasks

©

. Creativity emerges through a dynamic hierarchical interaction between default mode regions,

multimodal association regions in the parietal lobe, and frontal executive regions, such as the ACC

and DLPFC

dynamic network states during adolescence,
we predict that interventions aimed at training
executive functions during adolescence may
see particular success in changing the dynamic
brain states that accompany the development of
intelligence. This is particularly supported by
findings that the PFC is highly plastic during
adolescence (Petanjek et al., 2011), suggesting
that during adolescence executive processing
may be subject to greater experience-induced
plasticity. More specifically, we hypothesize
that training on executive function tasks during
adolescence may change the processing style
of these tasks, training adolescents to engage

in faster switching between brain states, which
may be employed in other scenarios as well.
Generalization of training may thus be more
accurately detected through changes in the
dynamic metastable states from which intelli-
gence and creativity emerge.
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