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Abstract
While an extensive literature in decision neuroscience has elucidated the neurobiological founda-

tions of decision making, prior research has focused primarily on group-level effects in a sample

population. Due to the presence of inherent differences between individuals’ cognitive abilities, it

is also important to examine the neural correlates of decision making that explain interindividual

variability in cognitive performance. This study therefore investigated how individual differences in

decision making competence, as measured by the Adult Decision Making Competence (A-DMC)

battery, are related to functional brain connectivity patterns derived from resting-state fMRI data

in a sample of 304 healthy participants. We examined connectome-wide associations, identifying

regions within frontal, parietal, temporal, and occipital cortex that demonstrated significant associa-

tions with decision making competence. We then assessed whether the functional interactions

between brain regions sensitive to decision making competence and seven intrinsic connectivity

networks (ICNs) were predictive of specific facets of decision making assessed by subtests of the

A-DMC battery. Our findings suggest that individual differences in specific facets of decision mak-

ing competence are mediated by ICNs that support executive, social, and perceptual processes,

and motivate an integrative framework for understanding the neural basis of individual differences

in decision making competence.
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1 | INTRODUCTION

Decision making is ubiquitous in daily life and depends on forming pref-

erences, selecting and executing actions, and evaluating outcomes.

Recent decades have seen remarkable progress in understanding the

behavioral, cognitive, and neural processes that underlie decision mak-

ing. Research to elucidate its neurobiological foundations would not

only advance our understanding of the nature of human decision mak-

ing, but would also facilitate clinical research that targets the underlying

neural mechanisms in an effort to facilitate decision making in psychiat-

ric illness and neurological disease. Emerging evidence from neuroimag-

ing studies indicates that multiple brain regions and networks are

associated with specific facets of decision making. For example, value-

based decision making has been shown to engage the ventromedial

and dorsolateral prefrontal cortex (Rudorf & Hare, 2014); decisions

based on probabilistic reasoning have been associated with activity in

the parietal cortex (Kiani & Shadlen, 2009; Shadlen & Newsome, 2001;

Yang & Shadlen, 2007); while decision making under risk or uncertainty

has been associated with activity in the orbitofrontal cortex, medial

prefrontal cortex, caudate, and rostral anterior cingulate cortex (Krain,

Wilson, Arbuckle, Castellanos, & Milham, 2006). In addition, reward-

based decision making is known to engage the limbic system, compris-

ing regions such as the amygdala, insula cortex, and basal ganglia (Lee,

2008; Marschner, et al., 2005).

Further evidence to elucidate the neurobiological properties of

decision making is provided by lesion-symptom mapping studies

Hum Brain Mapp. 2018;1–9. wileyonlinelibrary.com/journal/hbm VC 2018Wiley Periodicals, Inc. | 1

Received: 18 October 2017 | Revised: 31 January 2018 | Accepted: 26 February 2018

DOI: 10.1002/hbm.24032

http://orcid.org/0000-0002-0109-6636


(Bechara, Tranel, & Damasio, 2000b; Fellows & Farah, 2004; Glascher,

et al., 2012; Stuss, et al., 2000). In particular, the work by Glascher

et al., 2012, represents one of the largest lesion-based studies to exam-

ine reward-based decision making—demonstrating that the ventral pre-

frontal cortex plays a central role. The capacity to represent somatic

states (e.g., feelings and emotions) that guide reward-based decision

making are also known to engage the orbitofrontal cortex (Bechara,

Damasio, & Damasio, 2000a; Hornak, et al., 2003).

Despite remarkable advances in understanding the neurobiological

mechanisms of human decision making, several well-known challenges

remain. Often, experimental paradigms designed to measure decision

making competence do not reflect real world choices. Importantly,

humans exhibit sizeable interindividual differences in decision making—

revealed through the application of neuropsychological tests that are

designed to capture heterogeneity and by applying computational

approaches that can model individual differences. The widely estab-

lished role of individual differences in decision making in cognitive psy-

chology prompted us to explore the underlying neural correlates of

individuals’ decision making abilities based on the Adult Decision Mak-

ing Competence (A-DMC) test. (Bruine de Bruin, Parker, & Fischhoff,

2007). The A-DMC battery has been shown to reliably predict individ-

ual differences in decision making competence and is associated with a

wide range of real-world decisions—spanning social, economic, and

medical decision making. The A-DMC provides a comprehensive

assessment of core facets of decision making, including consistency in

risk perception (ability to perform probabilistic reasoning), resistance to

framing (understanding positive or negative valence effects), resistance

to sunken costs (ability to ignore prior belief in decision outcomes),

applying decision rules (weighing decision options), social norms (ability

to accurately judge the normative beliefs of one’s peers), and over/

under confidence (extent of self-awareness).

Using a data-driven approach, we investigated whether individual

differences in decision making competence (as measured from the A-

DMC) are related to interindividual variability in resting-state functional

connectivity across the entire brain connectome. Applying multivariate

distance-based matrix regression (MDMR) (Shehzad, et al., 2014;

Talukdar et al., 2017), we first identified brain regions sensitive to com-

posite A-DMC scores comprised of individuals’ responses on six subt-

ests measuring specific facets of decision making. We then applied

structural equation modeling (SEM) to investigate whether A-DMC

sensitive regions and their degree of influence on seven intrinsic con-

nectivity networks (ICNs) (Yeo, et al., 2011) were predictive of individ-

ual subtests of decision making competence. The seven ICNs under

investigation included the fronto-parietal network, dorsal attention net-

work, ventral attention network, default mode network, limbic network,

visual network, and somatomotor network (Laird, et al., 2011). Using

path analysis, we explored the direction and magnitude of association

between the observed neurobiological markers and individual differen-

ces in decision making competence.

This study therefore sought to elucidate (1) how decision making

competence is shaped by individual differences in the functional brain

connectome and (2) how the functional connectivity of the observed

brain regions—and their capacity to influence core ICNs—underlies

specific facets of decision making competence. Our approach takes

advantage of a multivariate analysis framework that is designed to map

contributions from multiple sets of functional connections across the

entire brain to explain individual differences in decision making compe-

tence. A multivariate approach enables an assessment of the functional

brain connectome—examining distributed patterns of brain activity in

their entirety—and therefore represents a methodological advance over

standard univariate methods. A multivariate approach also provides a

novel lens for examining individual differences, which standard group-

level statistics are unable to address. Furthermore, our application of

the SEM framework allows an investigation of the effects of network

influence on specific facets of decision making competence, providing

an opportunity to elucidate how decision making processes are shaped

by individual differences in the functional brain connectome.

2 | METHODS

2.1 | Participants

Three hundred and four participants were enrolled in the study (male:

147, female: 157, ages 18–43 years, mean 23.365.1 years). All partici-

pants were clinically healthy, native English speakers with normal or

corrected-to-normal vision. Each participant provided written informed

consent in accordance with guidelines established by the University of

Illinois Institutional Review Board for resting-state fMRI scans and

administration of the A-DMC battery.

2.2 | MRI data acquisition

All data were collected on a Siemens Magnetom 3T Trio scanner using

a 32-channel head coil in the MRI Laboratory of the Beckman Institute

Biomedical Imaging Center at the University of Illinois.

A high-resolution multi-echo T1-weighted magnetization prepared

gradient-echo structural image was acquired for each participant

(0.9 mm isotropic, TR: 1,900 ms, TI: 900 ms, TE52.32 ms, with

GRAPPA and an acceleration factor of 2). The functional neuroimaging

data were acquired using an accelerated gradient-echo echoplanar

imaging (EPI) sequence (Auerbach, Xu, Yacoub, Moeller, & U�gurbil,

2013), sensitive to blood oxygenation level dependent (BOLD) contrast

(1.9 3 1.9 3 2.0 mm voxel size, 56 slices with 10% slice gap,

TR52,000 ms, TE530 ms, FOV5240 mm, 908 flip angle, 10 min

acquisition, or 300 volumes). During the resting-state fMRI scan, partic-

ipants were shown a white crosshair on a black background viewed on

an LCD monitor through a head coil-mounted mirror. Participants were

instructed to lie still, focus on the visually presented cross hair, and to

keep their eyes open (Van Dijk, et al., 2010).

2.3 | MRI preprocessing

All MRI data processing was performed using FSL tools available in

FMRIB Software Library version 5.0 (http://fsl.fmrib.ox.ac.uk/fsl/

fslwiki/). The high-resolution T1 MPRAGE was brain extracted using

the BET analysis tool (Smith, 2002). FAST segmentation (Zhang, Brady,

& Smith, 2001) was performed to delineate gray matter, white matter,
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and CSF voxels. The resting-state fMRI data were preprocessed using

the FSL FEAT analysis tool (Jenkinson, Beckmann, Behrens, Woolrich,

& Smith, 2012; Satterthwaite, et al., 2013). Preprocessing entailed: slice

timing correction, motion correction, spatial smoothing (3 mm FWHM

kernel), nuisance signal regression (described below), temporal band-

pass filtering (0.009–0.1 Hz), linear registration of functional images to

structural images, and nonlinear registration of structural images to the

MNI152 brain template (2 mm isotropic voxel resolution).

Nuisance variables were modeled via GLM analyses to remove

spurious correlations, noise introduced by head motion, in addition to

variables of no interest such as signal changes in the white matter and

the cerebrospinal fluid. The set of nuisance regressors in the GLM anal-

ysis therefore included head motion correction parameters (using the

extended 12 motion parameters estimated in the FEAT preprocessing),

individual volume motion outliers estimated using DVARS (Power,

Barnes, Snyder, Schlaggar, & Petersen, 2012) (outliers flagged using the

boxplot cutoff 1.5 3 IQR), and mean white matter and cerebrospinal

fluid signals averaged across all voxels identified from the segmentation

of the high-resolution MPRAGE. The fully preprocessed resting-state

fMRI data were taken as the residuals from this GLM model. The resid-

uals were transformed into normalized MNI152 space and resampled

to 4 mm isotropic voxels.

2.4 | Adult Decision Making Competence (A-DMC)

battery

The A-DMC measures fundamental competencies of decision making

(Bruine de Bruin, et al., 2007). Six of the seven original subtests from

the A-DMC battery were included in this study (i.e., the path independ-

ence subtest was excluded due to its low retest reliability) (Bruine de

Bruin, et al., 2007). A description of each A-DMC subtest and associ-

ated dependent measure is summarized below.

2.4.1 | Consistency in risk perception

This test examines whether the respondent evaluates risk in an inter-

nally consistent manner (Bruine de Bruin, et al., 2007). For example, the

respondent is asked to assess the likelihood of complementary events

in which the probability of the subset (e.g., “dying in a terrorist attack”)

should not exceed that of the superset (e.g., “dying from any cause”) to

satisfy the criterion of internal consistency. Respondents are scored on

the basis of correctly identifying the likelihood of those events based

on probabilistic rules in set theory.

2.4.2 | Recognizing social norms

This test measures how well the respondents can accurately estimate

social norms based on the beliefs of their peer group (Jacobs, Green-

wald, & Osgood, 1995). The respondent is asked to judge whether

undesirable behaviors (e.g., “to steal”) are socially acceptable and then

is asked to estimate how many “out of 100 people your age” would

endorse each behavior. Performance on this task is measured by the

rank–order correlation between the observed and estimated percent-

age of peer endorsements.

2.4.3 | Resistance to sunken costs

This test measures the extent to which an individual ignores prior

investments (i.e., sunken costs) and focuses instead on outcomes of

their actions when making a decision (Arkes & Blumer, 1985).

Responses are scored on a 6-point Likert scale, where the lowest point

“1” indicates preference for the sunken-cost option, whereas the high-

est point “6” implies preference for the normatively correct option,

which reflects the ability to ignore the past losses and focus only on

future gains. The overall resistance to sunken costs score is determined

by averaging the responses across all items in this subtest.

2.4.4 | Resistance to framing

This test measures the extent to which framing equivalent choices as

gains or losses can influence the respondent’s preference (Tversky &

Kahneman, 1981). The respondent is presented a pair of questions that

differ only in the way that they are framed—either positively (gains) or

negatively (loss). For instance, in a hypothetical case in which 1,200

endangered animals are threatened by a pesticide, a positive framing of

the question would ask the participant to choose between two alterna-

tive forms of responses—they could save 600 animals or they can

choose the alternative that results in a 75% chance that 800 animals

will be saved and a 25% chance that 0 animals will be saved. The nega-

tive frame maintains the same wording, except the italicized words

save/saved are replaced with lose/lost, along with the complementary

numbers being presented to maintain statistical equivalence (e.g., a

75% chance that 800 animals will be saved is the same as a 75%

chance that 400 animals will be lost). Responses are scored on a 6-

point Likert scale. The resistance to framing score represents the mean

of the absolute values of the differences between each pair of items,

for all item pairs.

2.4.5 | Applying decision rules

This test measures the respondent’s ability to apply a specific set of

decision rules when making a choice (i.e., elimination by key features,

satisficing, lexicographic order, or equal weights; Payne, Bettman, &

Johnson, 1993). This test provides a set of priorities for a customer and

a set of product options under consideration by the customer.

Respondents select one answer from a set of multiple-choice options

and the number of correct responses determines the overall score.

2.4.6 | Under/over confidence

This test measures the extent to which a person recognizes the limits

of their knowledge (Bruine de Bruin, et al., 2007). The respondent is

first asked to provide a binary (true/false) response to a question

requiring general knowledge about the world. The respondent then is

asked to rate the degree of confidence they have in their response—

applying a scale from 50% (just guessing) to 100% (absolutely sure).

The overall under/over confidence score is then determined by sub-

tracting from 1 the absolute value of the difference between the mean

confidence rating and percentage correct across all items.

Results from the six A-DMC subtests were averaged to generate a

composite score for each respondent, which provided an index of deci-

sion making competence for further investigation within MDMR.
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2.5 | Multivariate distance-based matrix regression

(MDMR)

MDMR was used to investigate whether individual differences in

decision making competency (as measured by participants’ A-DMC

composite scores) are associated with resting-state functional con-

nectivity. The MDMR analysis pipeline involves (1) extracting resting-

state preprocessed BOLD time series signal from participants’ fMRI

scans; (2) computing a distance matrix indicating pairwise dissimilar-

ity between participants’ functional connectivity profiles for each

brain region; (3) performing multivariate regression using the A-DMC

composite scores as inputs and the distance matrix computed for

each brain region as output; and (4) generating a statistical map of

brain regions, which have significant associations with individuals’ A-

DMC composite scores. MATLAB R2014a was used to generate

code and analysis scripts for performing the MDMR analysis. Crad-

dock’s 800 parcellated brain atlas in MNI space (Craddock et al.,

2012) was applied as a mask to extract the mean BOLD time course

from grey matter voxels within each parcel. A large parcellation con-

sisting of 800 grey matter units was chosen to maintain regional

specificity and also because test analysis by Shehzad et al. (2014)

revealed substantial overlap at this resolution with whole-brain,

voxel-wise MDMR analyses.

The distance matrix used in MDMR was derived from individual

differences in functional connectivity profiles between each brain par-

cel. For each participant, functional connectivity was computed from

pairwise correlations between mean BOLD time courses extracted

from grey matter parcels that were common to all participants. A total

of 662 parcellated regions (out of the 800 parcels) were found to be

common across all participants. The correlations were Fisher’s Z-

transformed to improve normality. Next, dissimilarities between partici-

pants’ functional connectivity profiles were calculated based on the dis-

tance metric d5
ffiffiffiffiffiffiffiffiffiffiffiffiffiffiffi
2 12rð Þp

, where r represents the Pearson correlation

between the connectivity profiles for a participant pair and brain

region. All pairwise dissimilarities were then entered into a distance

matrix. MDMR was then applied in the final step to test the degree to

which the composite A-DMC scores explained variability in the distan-

ces between participants’ functional connectivity profiles at each

region separately.

The statistical parametric map computed from the MDMR analy-

sis is a pseudo-F statistic, which represents the proportion of var-

iance in distances accounted for by the individual differences in A-

DMC composite scores. As the pseudo-F statistic does not have a

known null distribution, significance was determined by permutation

testing. A null distribution was simulated by performing 10,000 ran-

dom permutations of the participant indices and computing the

pseudo-F statistic at each iteration. A p value was then computed for

each region by comparing the pseudo-F statistic from the original

data to the simulated null distribution. The p values were converted

to one-sided Z-scores and adjusted for multiple comparisons using

Gaussian Random Field (GRF) correction (Li, Guo, Nie, Li, & Liu,

2009). GRF correction was performed using Matlab based toolbox

for Data Processing & Analysis of Brain Imaging (DPABI) found at

http://rfmri.org/DPABI. The Z-scores were then projected back onto

the MNI152 brain template. Next, FSL “autoaq” tool was used to

determined center of mass (COM) coordinates of clustered regions

by applying a voxel level threshold of Z>2.3 (p< .01) and a minimum

cluster size of 10 voxels.

2.6 | Structural equation modeling (SEM)

The SEM framework was implemented to investigate associations

between A-DMC scores on the six subtests and measures of network

influence of A-DMC sensitive regions functionally linked to each ICN.

The A-DMC subtest scores obtained for all participants were adjusted

for age and gender. Measures of network influence of A-DMC sensi-

tive regions were derived from connectivity strength, which represents

the sum of all neighboring connection weights/links for a given brain

region/node (Rubinov & Sporns, 2010). A brief description of this anal-

ysis is presented below.

2.6.1 | Connectivity strength metric

Using a graph theoretical approach, nodes were defined as center

of mass coordinates of the Craddock’s parcellation units and edges

as the standard normal Z-score of the Fisher’s Z transformed corre-

lation values between pairs of nodes for each subject. To transform

Fisher’s Z into standard normal Z-scores, the Fisher’s Z were multi-

plied by their standard deviation approximated as r51=
ffiffiffiffiffiffiffiffiffiffiffiffiffi
n23ð Þp

,

where n is the number of samples comprising the BOLD signal. The

edges were next Bonferroni-corrected by applying a statistical Z-

threshold to identify significant positive correlations (p< .05) (Fox,

Zhang, Snyder, & Raichle, 2009; Murphy, Birn, Handwerker, Jones,

& Bandettini, 2009). The thresholded Z-scores were then rescaled

to represent connection weights ranging from 0 to 1. Based on

these positive connection weights, subject-wise weighted connec-

tivity matrices were generated, which represented functional con-

nectivity between nodes corresponding to A-DMC sensitive regions

(MDMR nodes) and those identified for each of the ICNs were gen-

erated (grey matter mask representative of the ICNs is available for

download at https://surfer.nmr.mgh.harvard.edu/fswiki/Cortical-

Parcellation_Yeo2011). Next, measures of total connectivity

strength were computed as the sum of the connection weights of

MDMR nodes linked to each ICN normalized by their node density.

Measures of network influence were eventually derived from the

average total connectivity strength of all MDMR nodes across each

ICN.

2.6.2 | SEM path analysis model

The software Mplus (Muth�en & Muth�en, 2007) was used to explore

the effects of the A-DMC sensitive regions’ network influence on each

ICN with respect to the individual A-DMC subtests. The directed

dependencies of measures of network influence with respect to each

ICN on every subtest of the A-DMC battery were evaluated. In addi-

tion, the covariations between measures of network influence and the

covariations between each of the subtests were estimated.
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3 | RESULTS

3.1 | Brain regions associated with individual

differences in A-DMC

Figure 1 illustrates the map of significant regions associated with indi-

viduals’ A-DMC composite scores (summarized in Table 1). A broadly

distributed pattern of cortical regions was observed, including brain

structures in frontal, parietal, temporal and occipital cortex. Significant

associations were observed for regions known to mediate executive

functions and language processing (frontal pole and inferior frontal

gyrus); visuospatial and attentional processing (lateral occipital cortex

and precuneus); emotion and memory (insular cortex, caudate, anterior

cingulate gyrus, and parahippocampal gyrus); and sensorimotor proc-

essing (precentral and postcentral gyrus).

3.2 | Networks influenced by A-DMC sensitive brain

regions

Results from the SEM path analysis are shown in Table 2, which displays

the direction and degree of association between network influence of A-

DMC sensitive regions on each of the seven ICNs and individual subtests

of the A-DMC battery (i.e., resistance to framing, resistance to sunken

costs, under/over confidence, consistency in risk perception, recognizing

social norms, and applying decision rules). Notably, the ventral attention

network predicted individual differences in resistance to framing

(b50.127; p5 .012). Also, significant associations were found between

measures of network influence and individual differences in recognizing

social norms for the limbic and fronto-parietal networks (b50.157;

p5 .006 and b50.154; p5 .003, respectively). In addition, we found

that the influence of A-DMCsensitive regions on the limbic network pre-

dicted individual differences in performance on the under/over confi-

dence (b520.146; p5 .010) and recognizing social norms subtests

(b50.110; p5 .066).We found that there was no significant association

between A-DMC sensitive regions and three ICNs, namely, the visual,

somatomotor, and dorsal attention networks, and individual subtests of

the A-DMC battery (range weights: 2.096 to .080). The SEM findings

are summarized in Figure 2.

4 | DISCUSSION

This study applied multivariate methods to investigate the neural

mechanisms underlying individual differences in decision making com-

petence, examining connections across the entire functional brain con-

nectome, administering a comprehensive and well-validated measure

of decision making competence, and studying a large sample of partici-

pants (N5304). Our findings lend support for an integrative frame-

work that combines neural representations for (1) executive functions,

(2) social factors, and (3) perceptual processes to investigate decision

making competence. We briefly review the implications of the MDMR

and SEM results in the context of these neural representations.

4.1 | Executive functions

MDMR results revealed that decision making competence was associ-

ated with frontopolar regions mediating executive functions. Further

evidence for the role of executive functions in decision making is sup-

ported by the SEM results linking recognizing social norms with the

fronto-parietal network. The fronto-parietal network is known to medi-

ate executive functions, such as goal-directed behavior, inhibitory

FIGURE 1 Multivariate Distance-Based Matrix Regression (MDMR) results: panels above illustrate the MDMR statistical z-score map indi-
cating brain regions whose interindividual variation in connectivity is significantly associated with A-DMC scores (GRF corrected; p< .01).
Color bar represents range of z-score values
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control, attention, and strategic planning (Cole, Repovs, & Anticevic,

2014). Therefore, the functional coupling between the A-DMC sensi-

tive regions and the fronto-parietal network draws upon inhibitory

control mechanisms, for example, to resist options that are negatively

perceived in the social context.

4.2 | Social and emotional factors

We observed significant associations between decision making compe-

tence and regions implicated with the limbic system regulating emotion

and reward based responses. Notably, the anterior cingulate gyrus,

which has been reported to play a central role in reward-based decision

making (Assadi, Yucel, & Pantelis, 2009; Rushworth, Behrens, Rude-

beck, & Walton, 2007) was found to be significant. Other significant

regions included the insular cortex, paracingulate cortex, parahippo-

campal gyrus, the caudate, and putamen, which have been known to

modulate social and emotional components of decision making compe-

tence (Kable & Glimcher, 2009; Lee, 2008). SEM results, on the other

hand, show positive association between the limbic network and recog-

nizing social norms in decision making. This finding suggests that the

limbic network may contribute to behavioral patterns and choices

based on subjective states and interoceptive awareness with respect to

social norms. Previous studies have indicated that the limbic system is

important for decision making, specifically for choices that are influ-

enced by emotional factors (Ernst & Paulus, 2005; Lee, 2008; Marsch-

ner, et al., 2005). Interestingly, the limbic network was negatively

associated with the under/over confidence A-DMC subtest. The

under/over confidence subtest is designed to assess an individual’s

degree of confidence in their decision. Recent evidence suggests that

the ventromedial and rostrolateral prefrontal cortex play a central role

in the representation of one’s confidence in decision making (De Mar-

tino, Fleming, Garrett, & Dolan, 2013). In this study, the observed pat-

tern of reduced functional connectivity in the limbic network and

higher connectivity in brain networks mediating executive control may

reflect the assessment of subjective confidence based on executive

(rather than emotional) mechanisms.

4.3 | Somatosensory and perceptual processes

The MDMR analysis revealed regions within the somatosensory area

such as the precentral and postcentral gyrus that are sensitive to

TABLE 1 MDMR results

Voxels Max X Y Z Region

125 2.91 22.14 260.7 60.4 L. PCUN

97 3.24 9.96 291.8 21.96 R. OCP

78 2.85 24.77 220.6 58.9 L. PRECG

52 3.24 224.9 295.2 26.19 L. OCP

37 2.38 242.4 21.03 0.432 L. INSC

30 3.16 66.1 246.5 5.33 R. MTG

28 2.55 223.9 24 225.6 L. PHG

27 2.41 211.6 11.8 29.48 L. CAUD

26 2.6 238.6 23.69 43.4 L. PRECG

26 2.51 54 25.8 21.85 L. IFG

25 2.39 26.16 45.5 23.84 L. PCNG

23 2.6 235.2 227.9 61.6 L. POSTCG

22 2.42 240.9 268.9 18.2 L. LOCC

21 2.34 3.14 13.4 28.4 R. ACNG

20 2.44 225 46.2 19 L. FP

20 3.04 7 14.2 28.2 R. CAUD

19 2.5 225.4 0.105 9.68 L. PUT

Abbreviations: ACNG5 anterior cingulate gyrus; CAUD5 caudate;
FP5 frontal pole; IFG5 inferior frontal gyrus; INSC5 insular cortex; L./
R.5 left/right hemisphere; LOCC5 lateral occipital cortex; MTG5middle
temporal gyrus; OCP5occipital pole; PCNG5paracingulate gyrus;
PCUN5precuneus; PHG5 parahippocampal gyrus; POSTCG5 postcen-
tral gyrus; PRECG5precentral gyrus; PUT5putamen.
Seventeen clustered brain regionswere identified using FSL “autoaq” tool from
theMDMRoutputmap demonstrating individual differences in functional con-
nectivity that are associatedwith the A-DMCweighted scores (p< .01, cluster
corrected usingGRF). The columns in Table 1 indicate the number of voxels
belonging to each identified cluster, themaximum z-score value in each cluster,
the center ofmass coordinates (X, Y, Z) inMNI space and region labels.

TABLE 2 Direct weights indicating degree and direction of association between network measures of influence of A-DMC-sensitive regions
with respect to each ICN and A-DMC subtests

ICN A-DMC subtests

Resistance
to framing

Recognizing
social norms

Under/over
confidence

Applying
decision rules

Consistency in
risk perception

Resistance to
sunk costs

Visual 20.063 20.006 20.014 0.005 0.005 20.009

Somatomotor 0.080 0.077 20.058 0.003 0.052 0.053

Dorsal attention 20.014 0.067 20.030 20.097 0.020 0.021

Ventral attention 0.127* 0.0808 20.068 0.026 20.007 0.032

Limbic 0.052 0.156* 20.146* 0.026 0.110 0.026

Fronto-parietal 0.066 0.154* 20.044 0.075 0.049 0.031

Default mode 0.051 0.108 20.027 0.115 0.089 0.048

Statistical significance: *p< .05.
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individual differences in decision making competence. These regions are

responsible for initiating and controlling bodily and physiological states,

and therefore may contribute to decision making via the simulation of

choice outcomes based on motor efference copy (Sperduti, Delaveau,

Fossati, & Nadel, 2011). In addition, individual differences in decision

making competence were associated with regions within the parietal

lobe, including the precuneus. Evidence from a recent study indicates

that the precuneus has differential connectivity within the default mode

network across individuals’ lifespan (Yang, et al., 2014) and have special-

ized roles in self-related cognition and awareness (Philippi, et al., 2012;

Whitfield-Gabrieli, et al., 2011). These specific attributes of the precuneus

suggest that it may be intimately linked with decision making outcomes

that depend on over/under-confidence or other metacognitive abilities.

SEM results also support that decision making competence is closely tied

to neural mechanisms in perception. Notably, we observed that the ven-

tral attention network was positively associated with resistance to fram-

ing, which assesses an individual’s ability to ignore irrelevant variations in

the decision problem. The ventral attention network is known to orient

cognitive resources to salient stimuli in the environment and suppress

nonrelevant signals (Fox, Corbetta, Snyder, Vincent, & Raichle, 2006; See-

ley, et al., 2007). Hence, functional interaction between the ventral atten-

tion network and the A-DMC sensitive regions could modulate

perceptual processes that assist in evaluating framing effects in decision

making.

5 | L IMITATIONS

While this work represents one of the largest (N5304) and most com-

prehensive studies to investigate individual differences in the neural

mechanisms of decision making competence, there are several limita-

tions. First, our study is based on an individual difference measure,

which maps brain regions associated with variability in A-DMC

composite scores. Future research should examine the extent to which

the observed results differ from those derived from standard univariate

group based methods. Comparison of these approaches would reveal

important neural mechanisms that underlie decision making compe-

tence that are common across the sample population and would com-

plement the current findings. Second, our MDMR findings provide

converging evidence for brain regions linked to decision making com-

petence based on resting-state fMRI data; further research should test

the hypothesis that task-related brain activation and connectivity will

engage the same (or a subset) of the networks identified in this resting

state analysis. Third, our study maps linear relationships between meas-

ures of network influence and A-DMC subtests. Given the complex

nature of interactions between different brain regions and networks,

the findings may not reflect higher order or nonlinear relationships

between distributed brain regions and neural systems that explains

individual differences in A-DMC subtests. Thus, future research should

further examine higher order and nonlinear relationships to replicate

and extend this study. Finally, this study examined individual differen-

ces within a large sample of healthy young adults (N5304) and should

be investigated in a replication study that employs multiple strategies

for statistical validation to assess whether the observed sources of

interindividual differences generalize beyond this sample.

6 | CONCLUSION

This study provides a novel lens for understanding the role of the func-

tional brain connectome in complex, real-world behavior—demonstrat-

ing that individual differences in functional connectivity contribute to

decision making competence. Our findings help to establish the effi-

cacy of a multivariate approach to study the neurobiological founda-

tions of decision making and set the stage for future research

investigating how the observed sources of individual differences—

FIGURE 2 SEM results: significant (solid line) associations between measures of network influence of A-DMC sensitive regions (grey
nodes) with respect to ICNs (purple, orange, and yellow nodes) and A-DMC subtests

TALUKDAR ET AL. | 7



represented within networks for executive, social, and perceptual proc-

esses—account for the richness and complexity of human judgment

and decision making.
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