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Small sample sizes reduce the replicability of
task-based fMRI studies
Benjamin O. Turner1, Erick J. Paul2, Michael B. Miller3 & Aron K. Barbey 4,5,6,7,8,9

Despite a growing body of research suggesting that task-based functional magnetic reso-

nance imaging (fMRI) studies often suffer from a lack of statistical power due to too-small

samples, the proliferation of such underpowered studies continues unabated. Using large

independent samples across eleven tasks, we demonstrate the impact of sample size on

replicability, assessed at different levels of analysis relevant to fMRI researchers. We find that

the degree of replicability for typical sample sizes is modest and that sample sizes much

larger than typical (e.g., N= 100) produce results that fall well short of perfectly replicable.

Thus, our results join the existing line of work advocating for larger sample sizes. Moreover,

because we test sample sizes over a fairly large range and use intuitive metrics of replic-

ability, our hope is that our results are more understandable and convincing to researchers

who may have found previous results advocating for larger samples inaccessible.
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Recent years have seen an increased focus on what has been
referred to as a reproducibility crisis in science, both in
science at large1–3, and perhaps even more acutely in the

psychological sciences4. Some of the reasons behind this crisis—
including flawed statistical procedures, career incentive structures
that emphasize rapid production of splashy results while pun-
ishing studies that report null findings, and biases inherent in the
publication system—have been articulated carefully in previous
work, again both generally5–7, and for fMRI in particular8–13.
Among these problems, the most frequently identified, and pos-
sibly the most easily remedied, is lack of statistical power due to
too-small samples. Indeed, the field of fMRI has seen recom-
mendations against large samples (e.g., ref. 14; cf. ref. 15), and
even when larger sample sizes are acknowledged as desirable,
what constitutes large enough has often been an ad-hoc process of
developing unempirical rules of thumb, or is based on outdated
procedures12.

Of course, this lack of power is driven in large part by the great
expense associated with collecting fMRI data16. Even relatively
small studies can cost several tens of thousands of dollars, and the
funding system throughout much of the world is not generally set
up to enable the routine collection of large (e.g., N > 100) samples.
However, aside from these financial considerations, there are two
other reasons researchers may persist in collecting small samples.
The first is that while tools exist that allow researchers to do
prospective power analyses for fMRI studies16,17, researchers may
struggle to understand these tools, because defining power in an
fMRI context involving tens or even hundreds of thousands of
statistical tests is conceptually distant from defining power in a
typical behavioral context, where there might be on the order of
ten such tests. Relatedly, meaningfully defining effect size is
conceptually straightforward in a behavioral context, but much
less so in an fMRI context.

The second possible non-financial reason that researchers
continue using small samples is because a number of studies have
shown that fMRI has generally fair-to-good test-retest relia-
bility18–21. It is possible that researchers take this to mean that
large samples are not necessary, particularly if the researcher
misunderstands standard design optimization approaches for
increasing power at the individual level to mean their small
samples are sufficiently powered22–24. However, test–retest
reliability is not only not synonymous with replicability, but it is
in some ways antithetical. This is because typical measures of test-
retest reliability, e.g. the intra-class correlation, rely on variability
across individuals. However, replicability is reduced by individual
variability, particularly with small samples. While it is true that a
measure with low test-retest reliability will have low replicability
(in the limit, all individual maps are pure noise, and if there are
suprathreshold voxels in the group average map, they likewise
represent non-replicable noise), it does not follow that high
test–retest reliability guarantees replicability at the level of group-
average maps. Nor is it the case that variability between indivi-
duals in terms of brain activity is so minor that we can disregard
it when considering the relationship between test–retest reliability
and replicability. On the contrary, research has demonstrated that
variability between individuals can swamp group-average task-
related signal25–27.

Our goal in the present study is to provide empirical estimates
of fMRI’s replicability—approximated using a resampling-based
pseudo-replication approach within a pair of large datasets—in
terms of the levels of results that are useful in the field (i.e., multi-
voxel patterns of unthresholded activity or cluster-based results,
rather than, e.g., peak t-statistic values). Our specific focus is on
the role of sample size (i.e., number of participants) on replic-
ability, although we do examine the influence of other factors that
might affect replicability, including design power28. We present

the result from each of the three levels of analysis described in the
Methods—voxel, cluster, and peak—in separate sections below.
For all Figures throughout the first three sections, note that we
plot results as lines for clarity, but computed our measures only
for the discrete sample sizes marked on each x-axis. Note too that
the x-axis uses a compressive (square root) scale. Each section
includes the true observed results for the measure used at that
level in terms of the impact of sample size and task on that
measure, as well as null results. In a separate section, we explore
the relationship between various measurable properties of the
data and the voxel-level replicability results.

We emphasize that our results, far from being relevant only to
researchers whose specific interest is in studying reproducibility
or replicability (e.g., ref. 29), are applicable to all researchers who
are interested in using fMRI to produce valid and meaningful
neuroscientific discoveries. In fact, we use N≈30 as our standard
for a typical (i.e., normative relative to the prevailing standards)
fMRI sample size, which is in line with empirical estimates by10

(median sample size of fMRI studies in 2015= 28.5) and11 (75th
percentile of sample size in cognitive neuroscience journals
published between 2011–2014= 28). To preview our results, we
provide an easily-interpretable demonstration of the facts laid out
by refs. 9 and ref. 11: replicability at typical sample sizes is rela-
tively modest. Furthermore, sample size is the largest driver of
replicability among those that we examined. Considering at least
some of our measures, researchers may wish to consider alter-
native approaches to answering their questions, rather than facing
disappointingly low replicability even at large (and expensive)
sample sizes.

Results
Shared analysis setup. All of the results described below are
based on a shared initial step, in which we resample participants
without replacement to produce pairs of disjoint groups with a
matched sample size. For any given resampling, we arbitrarily
label these two maps the “P” and “Q” maps.

Voxel-level results. Our first analysis assessed the replicability of
voxelwise patterns of raw Statistical Parametric Map values (SPM;
in this case representing parameter estimates from the general
linear model and not to be confused with the software package of
the same name). For this analysis, we measured replicability using
a Pearson correlation between vectorized unthresholded P and Q
maps. The results of this analysis are shown in Fig. 1, which
illustrates the results for the average across the eleven tasks,
alongside the average of the null results across the tasks.

There is no universally accepted value for this sort of
replicability that would allow us to identify a minimum
recommended sample size. However, we note that the smallest
measured sample size for which the average R2 surpassed 0.5 (the
point at which more variance between the paired maps is
explained than unexplained) was 36, which is still larger than our
standard for a typical sample size.

The results of our second voxel-level analysis, of binary
thresholded SPM replicability (using Jaccard overlap of maps
thresholded proportionally using a conservative threshold), are
illustrated in Fig. 2. Results using a liberal threshold are presented
in Supplementary Fig. 1. For these maps, we thresholded to match
the proportion of suprathreshold voxels to the observed
proportion suprathreshold for each task’s thresholded full-
sample analysis. That is, differences between tasks in terms of
power lead to differences in terms of the proportion suprathres-
hold, which in turn largely explains the differences between tasks
in these eleven curves. Even at a sample size of 121, the average
Jaccard overlap across tasks fails to surpass 0.6.
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Cluster-level results. The second level at which we considered
replicability was at the cluster level. For this analysis, we thre-
sholded each P and Q map using the cluster thresholding tool
from the analysis suite FSL, and computed the Jaccard overlap
between the resulting binarized thresholded maps. Figure 3 pre-
sents the results of our cluster-level analyses in terms of mean
Jaccard overlap as a function of sample size for each task using
the conservative threshold. Results using a liberal threshold are
shown in Supplementary Fig. 2. Unsurprisingly, average Jaccard
overlap at a sample size of 16 is near 0 for several tasks, because
these SPMs are often null (i.e., contain no suprathreshold voxels),
and even when both maps in a pair are non-null, the clusters
overlap minimally. As with the analyses holding a set proportion
suprathreshold per task, mean overlap remains below 0.5 (the
point at which more voxels are overlapping than non-over-
lapping) up to a sample size of at least 81.

Peak-level results. The final level of replicability we considered
was at the level of cluster peaks. For this analysis, we assessed how
frequently the peak voxel of each cluster was suprathreshold in its
corresponding pseudo-replicate. We used a single peak per cluster
(i.e., we ignored local maxima). Figure 4 illustrates the results for
suprathreshold peaks. Results using a liberal threshold are shown
in Supplementary Fig. 3. On average across tasks, even with a
sample size of 121, the peak voxel failed to surpass threshold in its
corresponding pseudoreplicate over 20% of the time.

Results of measureables analyses. Although our focus was on the
effect of sample size on replicability, and this variable was the
only one we manipulated systematically in our pseudoreplicate
analysis, we nonetheless have access to a number of other vari-
ables whose potential influence on replicability we can measure,
including variables related to motion, contrast power, and within-
and between-individual variability. Our goal in these measurables
analyses is not to draw strong inferences about the influence of
each of these variables, which is complicated by the inter-
dependence between many of our observations (e.g., overlap
between pseudoreplicates in terms of which participants comprise
each group; overlap between sample sizes for the same

pseudoreplicate, with larger sample sizes constituting supersets of
smaller sample sizes; and overlap between tasks in terms of
participant identity). Instead, we present qualitative results of a
simple analysis designed to provide some intuitive understanding
of the relative role each variable plays in driving replicability. Full
details on the modeling approach can be found in the Methods,
but briefly, for each task we fit a separate simple regression model
relating each of the above-mentioned variables to replicability,
and take as our measures of interest the effect size and ΔR2

associated with each variable.
Only two variables emerged as qualitatively having more than a

very weak relationship with replicability. As expected, sample size
was related to replicability (dMAP= 1.71, ΔR2MAP= 0.37). The
second variable to demonstrate a relationship with replicability
was between-individual variability (dMAP= 0.27, ΔR2MAP= 0.01).
Although several other variables demonstrated a consistent
relationship with replicability across tasks, the effects were
minuscule. Results for all variables are given in Supplementary
Table 1.

Discussion
Despite the development of various tools meant to allow
researchers to do prospective power analyses15,16, such tools are
apparently used only infrequently by researchers. Several previous
studies have suggested that neuroimaging studies suffer from a
marked, possibly fatal, lack of statistical power9,11. However, Type
II errors are not the only problem plaguing neuroimaging, as
other studies have demonstrated that certain widely used false-
positive correction methods underestimate actual false positive
rates30, and multiple testing correction has been a topic of sub-
stantial investigation throughout the history of neuroimaging31.

This previous work has uncovered persistent and troubling
problems with standard neuroimaging approaches, particularly as
it regards the use of appropriately well-powered (i.e., large)
samples. However, there have been few previous attempts to
operationalize replicability in the concrete ways we have here, or
to systematically examine the impact of sample size and other
dataset properties on such measures of replicability. One excep-
tion is12, which is a spiritual predecessor to the current work.
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Fig. 1 Unthresholded voxel-level results. Replicability results for voxel-level (unthresholded) analyses, measured as the Pearson correlation between paired
group maps. Average observed (±1 mean within-task standard deviation) shown in black (dark gray); average null (±1 standard deviation) shown in dashed
medium gray (light gray). Also shown are individual task curves for each task (colors given in legend; refer to Table 1 for task abbreviations)
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However, in addition to being a decade old (during which time
the field of fMRI research has changed substantially), the mea-
sures used by12 may not be as intuitively accessible as those we
have adopted here. Furthermore, that work focused on many
other drivers of replicability (e.g., threshold choice, thresholding
method), and their main conclusion with respect to sample size is
that N= 20 should be considered a minimum—a value that our
results suggest is too low.

Our results demonstrate that, regardless of whether one con-
ceptualizes replicability as being about patterns at the level of
voxels, clusters, or peaks, our estimates of replicability at typical
sample sizes are quite modest. For instance, the mean peak hit
rate across our eleven tasks for a sample size of 36 (which is above
the mean or median sample sizes reported in10,11 over the last
several years) is below 0.5. The observed mean tells us that over
50% of the cluster peak voxels observed in a group SPM with this
sample size will fail to be suprathreshold in an exact replication.
Furthermore, our results represent a best case scenario for
replicability (at any of our tested sample sizes for any of our tasks)
because we drew samples from the same broad population. All
data within each dataset were collected at one site and one
scanner, the experimental methodology and materials were
exactly identical for all subjects and all fMRI data processing was
completed using identical processing pipelines on the same
computers using the same software (per dataset). In other words,
for any single iteration in our bootstrap method, all pseudo-
replicates could be classified as exact replications. Deviations
from any of these criteria would likely introduce variability in the
data collection and processing streams, yielding lower observed
replicability.

What can explain this pattern of results? Clearly, there are two
possible sources of noise in a group-average result: within-subject
variance and between-subject variance. Increasing sample size
reliably reduces the impact of both sources of noise. However, our
analyses of how several easily-measured properties of each data
set impacted replicability revealed small but consistent roles for
several other factors, most notably the mean between-subject

similarity. The idea of inter-individual consistency has been
explored previously, and it is not altogether uncommon for
researchers to publish maps demonstrating how consistent their
results were across participants (e.g., refs. 32,33). However, our
results reinforce the measurable impact of individual differences.
A long line of research has highlighted the extraordinary varia-
bility sometimes observed between individuals, and argued for
taking advantage of this variability, or at least acknowledging and
attempting to control for it25–27,34–38. Our results fit with these
earlier observations that individual identity is a driver of patterns
of brain activity. Moreover, to the degree that our scanned
samples were more homogeneous than the population at large (as
is generally the case of scanned samples that largely comprise
undergraduates or members of the campus community), it is
reasonable to expect that the influence of individual differences
would be even larger in any study that used more representative
sampling.

It is possible that our results do a poor job of capturing the
average replicability that should be expected across the field at
large. However, we do not believe this to be the case, for four
reasons. First, our results for the People Pieces Analogy (PPA)
and Set-Shifting Task (SST), as well as for all Human Con-
nectome Project (HCP) tasks, each of which separately included
identical sets of participants and exactly matched pseudo-
replicate groups, span a fairly wide range of replicability values
(see Table 1 for a list of tasks and their definitions). Second, the
results from our two distinct datasets were broadly similar,
despite myriad differences at all levels of data collection and
analysis. Third, the included tasks are well-known, and cover a
number of cognitive domains of general interest to researchers in
cognitive neuroscience. And fourth, our results are consistent
with earlier work demonstrating the inadequacy of typical (N≈30)
sample sizes. Although there is no simple way to map our results
onto these earlier studies, the general conclusion is much the
same.

Another possibility is that our results are idiosyncratic to the
tasks included in our analyses. We hope that our choice of two
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Fig. 2 Conservatively thresholded voxel-level results. Replicability results for voxel-level (thresholded conservatively) analyses, measured as the Jaccard
overlap between paired group maps—that is the ratio of the number of voxels in the intersection of the two thresholded maps to the number of voxels in
the union of the two. Average observed (±1 mean within-task standard deviation) shown in black (dark gray); average null (±1 standard deviation) shown in
dashed medium gray (light gray). Also shown are individual task curves for each task (colors given in legend; refer to Table 1 for task abbreviations). See
also Supplementary Fig. 1
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datasets that span a wide range of domains yields results that are
broadly informative, but in recognition of the fact that we are
necessarily limited to working with a finite set of tasks, we did not
attempt to draw any strong inferences from our results, e.g.,
regarding the sample size at which a given replicability metric was
significantly non-zero. We would similarly encourage readers to
avoid attempting to draw even more fine-grained inferences, for
example, to assess the replicability of one task with respect to the
others, or to draw inferences from the replicability of a particular
task to the putative replicability of a corresponding cognitive
domain; such inferences would likely require more data than we
used here, and are certainly beyond the scope of the analyses we
conducted.

It is also possible that results using other methods would
demonstrate substantially higher replicability than the results we
present. Although it is beyond the scope of the present work to
adapt our approach to other analysis methods, part of our goal in
using data from the HCP39 was to enable other researchers to
carry out their own analyses of these data using a similar
approach, making whatever changes they see fit (in preprocessing,
software tool, or analysis method).

Although our results suggest that typical sample sizes are
inadequate, it would be inappropriate for us to try to use our
findings to identify a universal minimum sample size that could
be adopted across the field. This is because our results do not
represent how well sample sizes approximate ground truth but
rather the expected replicability at each sample size. Moreover, it
is clear that there is a range of replicability estimates associated
with each sample size, which is due to differences in effect size.
We do not focus explicitly on effect size here because, as outlined
in the introduction, this concept is not easy to define in a uni-
versally meaningful way for fMRI. We do present information on
the extent of activation in each task, as well as how peak height
and inter-individual variability relate to replicability, each of
which are presumably related to effect size. And more impor-
tantly, our tasks cover a reasonable range of effect sizes, and the
impact of sample size is clear across all tasks. For readers

interested in recommendations for a minimum sample size, we
refer to existing tools for conducting prospective power analyses,
and hope that future research will develop similar tools that make
use of the replicability measures we have employed here.

Our hope is that whereas earlier work pointing out the ubiquity
of underpowered studies may have been seen by the average
researcher as too abstract or technical to worry about, the present
results are accessible enough that researchers can see that typical
sample sizes produce only modestly replicable results, irrespective
of how replicability is measured. Thus, our results add to the
growing consensus calling for a shift in the field, away from
small-scale studies of hyper-specific processes to large-scale stu-
dies designed to address multiple theoretical questions at once.
Alternatively, methods which are transparent about treating
individuals as unique—for instance, individual differences
approaches34,37 or encoding methods40, or methods which
acknowledge individual variability and attempt to cluster parti-
cipants into relatively homogeneous subgroups—likely deserve
more attention for their potential to overcome at least one part of
the problem with small samples (i.e., inter-individual variability).
Of course, alternative methods are often ill-suited to answering
the questions of the sort addressed by general linear model
analyses; however, a paradigm shift in what kinds of questions
cognitive neuroscientists focus on may be a better solution than
persisting with group-based logic and having to choose between
unreplicable results or studies comprising a hundred or more
participants.

Replicability is the foundation of scientific progress. Unfortu-
nately, for a variety of reasons, many scientific fields are currently
gripped by an apparent crisis of irreproducibility1. While some of
the causes of this crisis are deeply interwoven into the academic
landscape—incentives related to publication, funding, and tenure
—one straightforward solution relates to statistical power.
Researchers in fMRI may have believed that they were adequately
addressing concerns about power by using carefully optimized
designs and rule-of-thumb large-enough sample sizes14,21,22.
Indeed, the success of quantitative meta-analysis methods (e.g.,
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Fig. 3 Conservatively thresholded cluster-level results. Replicability results for cluster-level (thresholded conservatively) analyses, measured as the Jaccard
overlap between paired group maps—that is the ratio of the number of voxels in the intersection of the two thresholded maps to the number of voxels in
the union of the two. Average observed (±1 mean within-task standard deviation) shown in black (dark gray); average null (±1 standard deviation) shown in
dashed medium gray (light gray). Also shown are individual task curves for each task (colors given in legend; refer to Table 1 for task abbreviations). See
also Supplementary Fig. 2
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activation likelihood estimation41), alongside reports of moderate
test–retest reliability for task-based fMRI18, may have reinforced
the sense that power in task-based fMRI was a solved problem.
However, meta-analytic approaches work precisely by relaxing
specificity about spatial location (and in many cases, about design
features including task, contrast, or putative cognitive processes);
likewise, test–retest reliability is only weakly related to replic-
ability. Previous empirical work has demonstrated that typical
fMRI sample sizes are inadequate9,11. Our results demonstrate
that replicability (as measured at multiple levels of analysis) is
quite modest at typical sample sizes, thus serving to highlight and
extend these previous results.

Methods
Overview. We carried out a series of analyses across eleven distinct tasks (from
two large datasets; see Table 1). Because these analyses had the same form across all
eleven tasks, we describe here the details of those analyses. We first describe the
details of the first dataset, followed by a description of the second dataset, then a
detailed description of each task in turn, and end with a description of the analysis
methods themselves.

Dataset 1 (UIUC). Participants: Participants were recruited from the Urbana-
Champaign community as part of two separate intervention studies, each of which

included a pre-intervention MRI session with two different fMRI tasks (for a total
of four fMRI tasks, themselves replications of refs. 42–45). Both studies were
approved by the University of Illinois Urbana-Champaign Institutional Review
Board; all participants in both intervention experiments provided informed con-
sent. All participants were right-handed, had normal or corrected-to-normal vision
without color blindness, reported no previous neurological disorders, injuries, or
surgeries, reported no medications affecting central nervous system function, were
not pregnant, had no head injuries or loss of consciousness in the past 2 years, and
were proficient in English. All participants received monetary compensation for
participation. Only data provided at the pre-intervention time point (i.e., prior to
the start of any intervention or experimental conditions) are included in the pre-
sent analyses.

A total of 227 participants were recruited for and provided data in the first
intervention study (Study 1). 3-back includes a sample of 214 participants with
complete data, and ObLoc includes 200 participants (of the 214 included in 3-back)
with complete data.

A total of 301 participants were recruited for and provided data in the second
intervention study (Study 2). For the two fMRI tasks, an identical set of 279
participants had complete data in both and are included in all analyses.

Scanning procedure: All participants in both Studies 1 and 2 were scanned on
the same Siemens 3 T Magnetom Trio. Study 1 participants were scanned with a
12-channel head coil; Study 2 participants were scanned with a 32-channel head
coil. High resolution anatomical data were obtained using a high resolution 3D
structural MPRAGE scan: 0.9 mm isotropic, TR= 1900 ms, TI= 900 ms, TE=
2.32 ms, with a GRAPPA acceleration factor of 2. Functional MRI BOLD data were
collected using the Siemens echo-planar imaging sequence. ObLoc, PPA, and SST
used the following parameters: TR= 2000 ms, TE= 25 ms, flip angle= 90°, 92 × 92
matrix with 2.5 mm in-plane resolution, 38 slices parallel to AC-PC with a 3.0 mm
slice thickness and 10% slice gap. 3-back used the same parameters, with the
exception of the following: TR= 2360 ms, 45 slices with a 2.5 mm slice thickness.
The number of repetitions varied for each task depending on the task duration (see
Task descriptions for details). Finally, a gradient field map was collected for use in
B0 unwarping matching the EPI parameters.

Preprocessing: Every run from each task was preprocessed identically using
FSL’s (www.fmrib.ox.ac.uk/fsl) FEAT (FMRI Expert Analysis Tool, version 6.00)
software package. Preprocessing included motion correction using MCFLIRT46,
BET brain extraction47, spatial smoothing with a 6 mm full width at half maximum
(FWHM) kernel, grand-mean intensity normalization, pre-whitening with the
FILM tool48, and a high pass filter with a cutoff of (1/90) Hz. EPI images were
additionally unwarped using the gradient field maps collected with the functional
runs. The high-resolution structural scan was registered to the MNI152-T1-2mm
standard brain via FLIRT46,49 and further refined using the non-linear FNIRT tool
(8 mm warp resolution50). Transformation of each functional scan to the MNI
standard brain was accomplished using a two-step process to improve alignment
first by registering each EPI to the high-resolution structural scan with the FSL BBR
tool51, and then applying the non-linear warp generated from the high-resolution
scan to the functional scan.
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Fig. 4 Conservatively thresholded peak-level results. Replicability results for suprathreshold peak-level (thresholded conservatively) analyses, measured as
the peak hit rate—that is, the proportion of cluster peaks in one map in each pair that are suprathreshold in the other map. Average observed (±1 mean
within-task standard deviation) shown in black (dark gray); average null (±1 standard deviation) shown in dashed medium gray (light gray). Also shown are
individual task curves for each task (colors given in legend; refer to Table 1 for task abbreviations). See also Supplementary Fig. 3

Table 1 Dataset details

Dataset Task abbreviation Full task name

UIUC 3-back 3-back
ObLoc Object Location
PPA People Pieces Analogy
SST Set-Shifting Task

HCP Emot Emotion Processing
Gamb Incentive Processing
Lang Language Processing
Motor Motor
Rel Relational Processing
Social Social Cognition (ToM)
WM Working Memory

Names and abbreviations of all tasks associated with each dataset
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General Linear Model analysis: For a complete description of each task, task
events, and contrasts, see below. Briefly, 3-back included 7 events; ObLoc included
4 events; PPA included 7 experimental events; and SST included 10 events.
Predicted BOLD signals were generated for each event via convolution with a
double gamma HRF (phase= 0). Six regressors derived from the motion
parameters were included as regressors of no interest in each low-level model to
mitigate the effects of motion in the data. The temporal derivative of each event
was also included and the same temporal filtering that was applied to the
preprocessed data was also applied to the model. A primary contrast of interest was
identified for each task, defined by the cognitive effect that the task was designed to
capture (i.e., the contrast an experimenter running any of these particular tasks
would be primarily interested in). The contrast of interest was estimated in each
subject in a mid-level analysis by combining all runs in a fixed-effects model.
Following that, group-level statistical results for each task/contrast were generated
using a mixed-effects model via FSL’s FLAME1 tool52.

Dataset 2 (HCP). In addition to the data collected at University of Illinois Urbana-
Champaign, we incorporated data from the HCP39,53. Details of the collection,
preprocessing, and low- and mid-level general linear model analysis of these data
can be found elsewhere (e.g., the HCP S500 Release Reference Manual: http://www.
humanconnectome.org/study/hcp-young-adult/document/500-subjects-data-
release/). The volumetric analysis results (smoothed with a 4 mm kernel) were
downloaded from the Amazon Web Services S3 bucket designated for sharing these
data (s3://hcp-openaccess) in August 2017. A total of 463 participants from this
release were included in our analyses (see Supplementary Table 2 for a full list of
participant IDs); the remaining participants who were included in this release but
not in our analyses were excluded on the basis of QC recommendations from the
HCP group or due to errors encountered during analysis. Any participant who was
excluded for a single task was excluded across all tasks, such that the seven HCP
tasks have an identical set of participants.

Task descriptions. The design of each task was based closely on a previously-
published instantiation of each task. Here, we provide the basic details of each task,
and explicitly highlight any points at which the design or analysis deviated from its
previously-published antecedent.

3-back: See44 for full details regarding the paradigm. This was a 3-back working
memory task. Participants saw multiple short series of consecutive stimuli, during
which they had to respond to items that had appeared exactly three items earlier
(targets). These were intermixed with new items, as well as items that had appeared
two, four, or five items earlier (lures). As in44, there were two functional runs (one
using faces, the other using words, order counterbalanced across participants), each
of which included four blocks of 16 trials (plus five jitter fixation trials per block).
Trials were modeled with seven regressors: two each (correct/incorrect) for targets,
lures, and non-lures; and one for missed trials. Our primary contrast of interest
compared correct targets and correct lures. On average per run, this contrast
included 10.1 trials (standard deviation= 2.7 trials) versus 12.8 trials (standard
deviation= 2.3 trials).

ObLoc: See45 for full details regarding the paradigm. This was a task of
relational memory. Participants viewed displays of four 3D objects on a 3 × 3 grid,
and had to indicate whether a test grid, displayed rotated after a short delay,
matched the original layout. These test grids could be of three types: match, in
which all items retained their original relative positions; mismatch, in which one
item moved out of position; or swap, in which two items swapped positions. Each
trial was comprised of an encoding period, a delay period, and a test period. There
were five functional runs, each of which included 15 trials. These trials were
modeled with a simplified set of four regressors: one each for correct encoding+
delay periods (collapsed across trial types), match test periods, and non-match test
periods (collapsing across mismatch and swap trials); and one for all periods of all
incorrect trials. Our primary contrast of interest compared correct match and non-
match test periods. On average per run, this contrast included 3.9 trials (standard
deviation= 0.7 trials) versus 5.7 trials (standard deviation= 1.9 trials).

PPA: See42 for full details regarding the paradigm. This was a task of analogical
reasoning, with a 2 × 2 design in which relational complexity (the number of to-be-
attended stimulus traits, 1 or 3) was crossed factorially with interference level (the
number of irrelevant dimensions that lead to an incorrect response, 0 or 1). In our
adaptation of their design, we included three functional runs, each of which
contained 54 trials. These trials were modeled by seven (RT-duration) regressors:
four defined per the 2 × 2 design described above; another two for invalid trials
(relational complexity 1 or 3); and a final regressor for error trials. Our primary
contrast of interest compared relational complexity 1 with relational complexity 3,
collapsing across interference levels. On average per run, this contrast included 18.5
trials (standard deviation across participants= 1.3 trials) versus 17.1 trials
(standard deviation= 2.4 trials).

SST: See43 for full details regarding the paradigm. This was a task of set
switching. Participants were always tasked with counting the number of unique
levels of a given relevant dimension; the relevant dimension changed (as indicated
by a printed cue above the stimulus) every 1–6 trials. Trials varied in terms of:
switch vs. non-switch (as well as number of preceding non-switch trials for switch
trials); stimulus complexity (1, 2, or 3 varying dimensions with multiple levels); and
response complexity (1, 2, or 3 potential valid response options across all

dimensions). As in ref. 43, there were two functional runs, each with 81 trials. These
trials were modeled with ten (RT-duration) regressors: two for switch/non-switch;
six parametric regressors (orthogonalized with respect to the switch/non-switch
EVs) encoding separately for switch and non-switch trials stimulus complexity,
response complexity, and number of preceding non-switch trials; and two
regressors to model error and post-error trials. Our primary contrast of interest
compared switch and non-switch trials. On average per run, this contrast included
31.0 trials (standard deviation= 5.6 trials) versus 32.7 trials (standard deviation=
5.0 trials).

HCP Tasks: See53 for details on the tasks included in the HCP. Supplementary
Table 3 lists the tasks, as well as the contrast chosen for each task (task names,
contrast numbers, and contrast descriptions taken from supplemental materials of
ref. 54). We note that HCP’s core research team recommends caution in the use of
volumetric data; however, because our aims are orthogonal to those of most users
of these task-based data, and because our measures are all designed for volumetric
data, we feel that our use of these data, rather than the surface-based data, is
appropriate.

Pseudo-replicate analysis. To estimate the replicability of group-level results, we
took the following approach. First, we split our full sample of N participants into
two randomized, non-overlapping sets (P and Q) of length N/2. Next, we chose a
sample size k∈ {16, 25, 36, 49, 64, 81, 100(, 121)} for which we sought to estimate
the replicability, and used FSL’s FLAME1 tool to generate group-level statistical
maps using the first k participants in both groups P and Q. Then, for each of a
number of similarity measures, we computed the similarity between the P and Q
group-level maps. Finally, we repeated the preceding steps across all in-range
values of k, and for 500 random sorts in groups P and Q.

This same process was carried out for every task; for 3-back and ObLoc, all sorts
were done independently, while for PPA and SST (which comprised an identical set
of participants), the same 500 sorts were applied to both tasks, and likewise, a single
set of 500 sorts was applied to all HCP tasks. For the purposes of presentation, we
show the average replicability estimate across all eleven tasks for each sample size,
along with the average within-task (and within-sample size) standard deviation
(that is, the standard deviation is computed for each task and sample size; these
estimates are then averaged across tasks at each sample size), though we also
include the curves for each task. Although we present error bars for all of our
analyses, note that, as with all resampling-based analysis methods, our results suffer
from complex interdependence that makes it difficult to draw strong inferences
about differences between tasks. That is, the variance among the 500 simulated
replications of a given task in our approach may underestimate the variance that
would be observed given 500 true, completely independent replications of the task.
Moreover, there is no analytic solution that would let us correct for this
underestimation, if in fact it exists. Therefore, all error bars should be interpreted as
being qualitative or illustrative. To that end, we use standard deviations rather than
standard errors or confidence intervals in our presentation of the results.

Similarity statistics. The similarity statistics that we used to operationalize
replicability were chosen to reflect different levels of focus. Broadly, there were
three levels, which from most to least granular were voxel, cluster, and peak. We
describe the measure(s) associated with each level in turn below. Throughout our
analyses, we present results in an exact replication frame—that is, our results
provide an empirical demonstration of what a researcher could expect if she were
to re-run a study exactly, down to the sample size of the original study. Our gold
standard would be to present results that reflect how well a study’s results capture
ground truth as a function of sample size. Unfortunately, as is generally the case,
the ground truth for the experimental contrasts we have included here is unknown.

Previous investigations in a similar vein have used either a meta-analytic
approach or results from large-enough samples to approximate ground truth.
However, meta-analyses suffer from well-established biases against small (but
putatively nonetheless significant) results, and are moreover ill-suited to address
some of the levels we focus on here. Likewise, although we have access to large
samples by the standards of many neuroimaging studies, they may not be large
enough to establish a reliable ground truth. More to the point, because of
differences between tasks in terms of power and maximum available sample sizes,
these ground truth maps would reflect different levels of truthiness across tasks,
which would further confuse interpretation of these results. However, we do use
results from the full sample in our voxel-level (thresholded) analyses, as described
in more detail below.

Voxel-level replicability (intensity): Arguably, the goal in fMRI is to accurately
capture the activity in every single voxel. Indeed, many analysis methods are
predicated on the assumption that BOLD measures of voxel-level activity are
meaningful, and many techniques for improving data acquisition or preprocessing
are aimed at getting ever-finer spatial resolution (which we presume would be
wasted effort if researchers’ goal was merely to approximate the spatial location of
activity, or equivalently, the activity associated with a given location). Therefore,
the first level of replicability on which we focused was the replicability of voxel-wise
intensities.

To quantify similarity, we used the Pearson correlation, which ranges from -1
(inverse SPMs, invariant to scale) to 1 (identical SPMs, invariant to scale). The
Pearson correlation gives us a holistic indication of how similar the between-voxel
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patterns of activity are across SPMs. To generate this measure, we computed the
similarity between the vectorized unthresholded group-level SPMs, after applying a
common mask to remove voxels that were zero (i.e., outside of the group field of
view) in either SPM.

The null distributions for both metrics were constructed by generating SPMs of
white noise spatially smoothed to match the observed smoothness in our real
SPMs, and rescaled to equate the robust min and max (i.e., 2nd and 98th percentile,
respectively). For each task and sample size, we generated the observed histogram
of estimated FWHMs (using FSL’s “smoothest” command) as well as observed
histograms of robust mins and maxes. We then parameterized these histograms
and drew 1000 samples from the resulting parametric normal distributions. Finally,
we generated 1000 maps of pure (0,1) noise, smoothed each map with the
corresponding sampled FWHM (using FSL’s fslmaths utilities) and rescaled to
match the sampled robust min and max. We then computed the correlation
between each real map and all 1000 of these null maps, and took the 95th percentile
across these 1000 correlation values as the null for that specific real map; repeating
this procedure across all maps yielded null values for every map, over which we
took the average to arrive at the null curves presented in the figures.

Voxel-level replicability (thresholded): Without abandoning the notion of
describing replicability at the voxel level, it is nonetheless possible to relax the
definition of what is being replicated somewhat—i.e., from raw intensity value to a
binary active/inactive classification. To this end, we carried out a second set of
analyses at the voxel level, using thresholded, binarized maps. We used full-sample
results in these analyses. Specifically, we thresholded each of the full-sample SPMs
at liberal and conservative thresholds using FSL’s cluster-based thresholding, and
used these thresholded maps in order to estimate the true proportion of voxels that
should be suprathreshold for each task. Note that because the full samples comprise
a larger number of participants than most fMRI studies—and because we will treat
these full-sample results as ground truth which should be free of false positives
inasmuch as possible—we have set the liberal and conservative thresholds higher
than is typical in most fMRI experiments. The exact thresholds varied across
data sets (in order to equate the power of the z-critical value as a function of
sample size). See Table 2 for all z thresholds; all cluster p thresholds were set
at p < 0.01.

With these per-task proportions suprathreshold (which are listed for each task
in Supplementary Table 4), we simply applied proportion-based thresholding of the
group-level SPMs (two-tailed) in order to match the full sample proportion
suprathreshold. Conceptually, this is distinct from the cluster-based thresholding
used in the subsequent sections, in that the voxels which end up suprathreshold are
not guaranteed to meet any particular cutoff for significance, either at the voxel
level or familywise. Thus, the quantity that is held constant across group-level maps
P and Q is not the theoretical type I or II error rates of each map, but simply the
number of suprathreshold voxels. Our metric of replicability for these thresholded
maps was the Jaccard statistic, which is simply the ratio of the intersection of a pair
of thresholded maps divided by their union (with intersection calculated subject to
the constraint that the voxel have the same sign in both maps—i.e., a voxel which
was positive suprathreshold in P and negative suprathreshold in Q would not count
as an intersection, but this voxel would be counted in the denominator). This
statistic ranges from 0 (no overlap) to 1 (perfect overlap).

The null results were generated using the same approach outlined for the
intensity-based voxel-level analyses, with the added steps of thresholding (two-
tailed) the null maps at the same target proportion and computing the Jaccard
overlap (again, in a sign-sensitive manner) between the pair of one null and one
true map. As above, this procedure was repeated 1000 times and the 95th percentile
was taken for each map, and values were averaged across maps.

Cluster-level replicability: While the ultimate or idealized goal of fMRI would
seem to be voxel-level replicability, the common currency of today’s analytic
landscape is generally the cluster (or as a special case, the peak; see next section).
Therefore, the second level of replicability on which we focused was at the cluster
level. Here, we chose to focus simply on the binary distinction between sub- and
supra-threshold that forms the basis of cluster-based approaches (along with
others). Although cluster-based approaches are widely used, it is less clear exactly
what it means to replicate a cluster. Existing methods for conducting inferential
statistics on clusters (e.g., Gaussian random field theory55; or permutation56,) refer

to the null probability of observing a cluster of a given size (or possibly mass57;)
conditioned on an initial threshold level, but do not address the question of exactly
where this cluster appears.

Certainly, the spatial resolution at the cluster-level is coarser than at the voxel-
level—researchers generally do not expect that every single supra-threshold voxel
in a given cluster would be supra-threshold under replication, and likewise with
sub-threshold voxels. Durnez, Moerkerke, and Nichols58, from which we take
inspiration for our peak-based approach, employed a liberal definition in their
cluster-based methods: a cluster is declared to be replicated if a single voxel from a
given cluster is suprathreshold in replication. For our application, such a definition
is far too generous, so we once again used Jaccard overlap. To generate clusters, we
used FSL’s cluster-based thresholding on every group-level SPM, once at a liberal
threshold (z > 1.96, p < 0.05) and once at a more conservative threshold (z > 2.81,
p < 0.01). As with the previous thresholding analysis, we carried these analyses out
in a two-tailed fashion, running FSL’s cluster-based thresholding once with z > zcrit
and once with z <−zcrit; then, Jaccard overlap was computed in a sign-sensitive
manner.

We note as well some researchers might view cluster replication as a question of
proximity; although Jaccard overlap is not a measure of proximity, it will generally
track with proximity (i.e., as two clusters get closer together, their Jaccard overlap
will increase). The exception to this is in the case of clusters which have zero
intersection; a proximity-based measure would distinguish between a proximal pair
of (non-intersecting) clusters and a distal pair, while both would have a Jaccard
overlap of 0. In the interest of simplicity, as well as conceptual rigor when it comes
to defining replication, we eschew such proximity-based measures.

The null was computed almost identically to that described in the previous
section: each null smoothed map was thresholded (two-tailed) to match the
proportion of suprathreshold voxels from the corresponding true image, and the
Jaccard overlap between the two was computed.

Peak-level replicability: The last analysis we report focuses on the level of peaks.
Although clusters form the foundation of the majority of thresholding-based
analyses used today, these clusters are typically reported simply in terms of the
location and intensity of their peaks. In fact, some recent work has developed the
statistical framework for understanding the behaviors of peaks, and how this can be
used in, e.g., power analyses17,58. For the present purposes, we do not need to know
the distributional characteristics of peaks, nor do we need to use the sophisticated
estimation procedures described by ref. 58. Therefore, we use the same cluster-
extent (Gaussian random field theory) thresholding approach as for the cluster-
level analyses. That is, whereas58 use a peak-based secondary threshold when
considering peaks as topological features, we use an extent-based secondary
threshold.

A peak is considered replicated if it is suprathreshold under replication (i.e.,
part of any surviving cluster). This is a fairly generous definition of replication, but
much less so than their cluster-level approach (i.e., non-zero overlap between
clusters). Although we cannot interpret results in terms of false positives (because
we are not comparing against ground truth), we can nonetheless examine the
replication success of suprathreshold peaks. That is, we compute the proportion of
peaks in one map that are suprathreshold in the complementary map. And unlike
all previous measures, this measure is asymmetric—the proportion of P peaks that
are suprathreshold in Q in general will not be equal to the proportion of Q peaks
suprathreshold in P—so we calculated it in both directions and then averaged the
results to arrive at the final value.

As with all other thresholding-based measures, we carried this analysis out in a
sign-sensitive manner—i.e., a peak from a positive cluster did not count as
overlapping even if it intersected with a suprathreshold negative cluster. We used
the same approach described in the preceding section to generate the null
distribution. That is, we used the smoothed null maps, thresholded (two-tailed) to
match proportion, to classify peaks.

Peak height replicability analysis. For our peak analyses, in contrast to our other
analysis approaches, it is possible to construct a disaggregated statistic—that is, to
define replicability on a peak-by-peak basis, rather than only mapwise. This allows
us to look in a more fine-grained manner at the relationship between effect size,
replicability, and sample size. To this end, we collated each peak z value with
whether that voxel was replicated (i.e., was suprathreshold in the counterpart map),
separately for each sample size but combining across all tasks. We then fit a
separate logistic regression model for each sample size. Finally, we used the sim
function (part of the arm package in R) to graphically display uncertainty around
the model fits. Note that this approach treats task as a fixed effect, and moreover,
weights tasks proportional to the number of total peaks across all maps for a given
sample size. Note too that, as with the main peak analysis reported in the
manuscript, a low p(replicability) is heavily influenced by the sparsity of the
counterpart map. The results of this analysis are shown in Supplementary Figs. 4, 5.

Measurables. Our expectation was that sample size would be the largest driver of
replicability, irrespective of how it was measured. However, we also expected
variability between our tasks (which would be unexplainable by k), as well as
variability within a task for a given k (which would be unexplainable both by k and
by task-level variables). Therefore, we carried out an analysis in an attempt to find
other easily-measured variables that might explain these two types of variability.

Table 2 Task thresholds

Task(s) Sample size Liberal
threshold

Conservative
threshold

3-back 214 ±3.50 ±5.25
ObLoc 200 ±3.39 ±5.08
PPA, SST 279 ±4.00 ±6.00
All HCP
tasks

463 ±5.15 ±7.73

Specific z thresholds used in cluster-based thresholding of full-sample analyses for use in
proportion-based thresholding analysis

ARTICLE COMMUNICATIONS BIOLOGY | DOI: 10.1038/s42003-018-0073-z

8 COMMUNICATIONS BIOLOGY |  (2018) 1:62 | DOI: 10.1038/s42003-018-0073-z | www.nature.com/commsbio

www.nature.com/commsbio


Although our primary goal is descriptive—that is, to identify the relationships
present in our data—we used a modeling approach that in principle should allow
generalization.

Before we describe this approach in detail, we note that we cannot use standard
regression techniques to derive inferential statistics for our regressors, because our
observations are non-independent (i.e., the correlation between any P and Q
group-level maps reflect contributions from specific participants, all of whom will
almost surely be members of other P or Q groups). Moreover, the influence of this
non-independence varies across sample sizes, because the average number of
participants in common between any two groups across iterations at a sample size
of, say, 16, will be much lower than the average number of participants in common
between groups at a sample size of 100.

Our modeling approach was relatively straightforward. First, we calculated per-
pseudoreplicate measures for each of five variables: motion (taken as the average
across functional runs of FSL’s estimated mean absolute RMS per run); contrast
power (average across functional runs of the reciprocal of the contrast
precision ¼ c � invðX′ � XÞ � c′ , where c is the contrast vector and X is the
convolved design matrix); the number of outliers in the design matrix’s hat matrix
(average across functional runs of the count of diagonal entries on the hat matrix
exceeding 2 � rankðhatÞ=nrowsðhatÞ, where nrows(M) is the number of rows in M;
see ref. 59); within-individual variability (the average across every pair of runs of
the whole-brain correlation between the run-level SPM for the given contrast
within a participant) and between-individual variability (the whole-brain
correlation between individual-level SPMs for the given contrast for each pair of
participants).

The first four of these measures are defined on a per-participant basis, while the
last is defined at the level of participant pairs. In order to translate these measures
to the pseudoreplicate level, we took the arithmetic mean of the per-participant or
-participant-pair measures over all participants in a given pseudoreplicate, as well
as the standard deviation. Finally, to translate these per-pseudoreplicate measures
to the pseudoreplicate-pair level (which is the level at which our outcome variables
are defined), we took the arithmetic mean and absolute difference between the P
and Q pseudoreplicate-level measures in each pair. Thus, each of our five original
variables that varied at the individual level is expanded to four variables for the
purposes of modeling. The final variable, sample size, does not vary below the
highest level, and so does not need to be expanded similarly. Likewise, our outcome
variable of unthresholded voxelwise similarity is already defined at the appropriate
level.

Once we have the explanatory variables defined for every pseudoreplicate pair
for every sample size and task, we did simple task-wise ordinary least squares
regression to estimate the influence of each variable. First, for each task, we
removed all observations from the largest sample size per task for the outcome
variable and all explanatory variables (because for some tasks for which k was near
N/2, some of our variables had variance near zero), then demeaned all variables.
Next, we orthogonalized each of the four within-subjects variability regressors with
respect to the twelve preceding variables (i.e., those derived from motion, contrast
power, and hat-matrix outliers), and orthogonalized each of the four between-
subjects variability regressors with respect to the preceding sixteen. Finally, we
regressed the outcome variable on this set of explanatory variables (removing
collinear variables as needed—this only occurred for tasks for which there was no
variance in contrast power across individuals, such that some of the variables
derived from contrast power were undefined).

We present two measures of the strength of the relationship between each
original explanatory variable and the outcome variable. The first of these measures
is the effect size of the largest of the four variables derived from each original
variable—that is, βi=

pðσ2err � ci � inv X′ � Xð Þ�c′iÞ, where σ2err is the sum of squared
residuals from the model, ci is a vector of zeros with 1 as its ith entry, and X is the
design matrix. This is the standard formula for the z-value associated with a given
β, without the reciprocal of the degrees of freedom in the denominator. The second
measure is the increase in R2 that results from including adding all four variables
derived from one of the original explanatory variables, compared against a model
that includes all variables except these four.

In order to aggregate each of these measures across tasks, we computed the
maximum a posteriori estimate of each across tasks. For the measure of effect size,
we used a prior distribution of (0,1) to shrink our estimated average across tasks.
For the measure of ΔR2, which ranges from 0–1, we first used a logit transform to
convert the measures to a scale with infinite support, then used a prior distribution
of (−20,10) in the transformed scale to shrink the estimate average toward -20
(again, in the transformed scale), and finally used the logistic transform to return
the result back to the original 0–1 scale.

Note that this modeling approach is not able to probe the relationship between
the explanatory and outcome variables at the level of differences between tasks.
This was an intentional choice on our part because for some of the explanatory
variables, between-task differences were many orders of magnitude larger than
within-task differences. Moreover, because our tasks differ in many ways that aren’t
captured by our chosen variables, it would be extremely speculative to attribute
between-task differences in replicability (with a sample of only 11 tasks) based on a
model including over twenty regressors. Therefore, using an approach that relies on
the consistency of the within-task relationship across tasks is conservative,
although we still caution readers against drawing strong inferences from our
results, because our approach is designed to be primarily descriptive.

Code availability. All custom MATLAB analysis scripts are available from https://
github.com/fmrireplicability/NCB_code.

Data availability. All original data for the HCP analyses presented here are
available from the AWS S3 bucket described above (s3://hcp-openaccess). The
IARPA SHARP Program data repository is anticipated by Fall 2019.
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