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Although analogical reasoning (AR) plays a central role in higher-level cognition and constitutes a key source of
individual differences in intellectual ability, the neural mechanisms that account for individual differences in AR
remain to be well characterized. Here we investigated individual differences in AR within a large sample
(n = 229), using multivariate fMRI analysis (a simple multiple kernel learning machine). The individual AR
capability was positively correlated with activation level in a prefrontal executive network and a visuospatial
network. Notably, the best predictors of individual differences in AR within these networks were activation in the
dorsomedial prefrontal cortex (response selection) and the lingual gyrus (visual feature mapping). In contrast, AR
capability was negatively correlated with activation in the default mode network. The implications of the reported
findings are twofold: (i) Individual differences in AR depend on multiple executive and visuospatial brain regions,
where their respective contributions are contingent upon the individuals' cognitive skills; (ii) Brain regions
associated with individual differences in AR only partially overlap with brain regions sensitive to the associated
task demands (i.e., brain regions sensitive to the analogy relational complexity, at the group-level). We discuss
implications of such brain organization supporting AR as an example for brain architecture underlying higher-
level cognitive processes.

1. Introduction individual differences in AR are explained by activity within a few pre-

frontal brain regions implicated by the larger part of early literature, or

Analogical reasoning (AR) is a hallmark of human intelligence,
enabling the capacity to reason about novel scenarios based on a com-
parison between objects, or systems of objects, that highlights respects in
which those scenarios could be considered as similar. Therefore, by ac-
counting to relational similarity, reasoning by analogy involves identi-
fying higher order patterns and discovering recurrences of such patterns
despite apparent variation in the elements that compose them. This
capability for relational processing provides the foundation for analog-
ical reasoning and constitutes an essential facet of human intelligence —
giving rise to multifaceted categorization, problem solving, creativity
and scientific discovery.

The current study had two primary objectives: (i) to investigate if

instead can be better explained by a distributed pattern of activity within
a large-scale brain network as suggested more recently; and (ii) primarily
to assess the relationship between brain regions underlying individual
differences in AR and brain regions sensitive to the AR task demand
(defined by the analogy complexity, evident as a group-level effect). This
enabled to investigate the relation between brain regions associated with
context induced cognitive load, (e.g., an increase in AR complexity) at the
group level, and brain regions accounting to individual differences in AR
capabilities. It may be presumed that brain regions sensitive to group-
level effects, as evident when manipulating task demands, also account
for individual differences in the associated tasks. However, for reasons
detailed below we hypothesized that in higher-level cognitive processes,
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such as AR, this is not likely to be the case (see also Supplemental 1 for a
simulation exemplifying this point).

Besides being reliant on prior knowledge and semantic retrieval, AR
engages (i) feature mapping processes, in which specific features are
highlighted, aligned and integrated, and inferences are projected from
one analogue to others; and (ii) an evaluation process, in which the
resulting analogy and its inferences are examined and judged (Gentner
and Smith, 2012; Holyoak, 2012; Krawczyk et al., 2004). The diversity of
contexts in which AR is engaged and the fact that multiple cognitive
processes are involved in AR have motivated the perspective that AR is
not a unitary construct but instead depends on multiple cognitive
mechanisms that are recruited based on task demands (e.g., relational
complexity) and the individual cognitive proficiencies. For example, (i)
larger working memory capacity, and better attentional control capa-
bility would enable intricate feature mapping, which essentially enable
processing a greater number of analogues and analogues' features; and
(ii) better response selection capability would be associated with better
capability to evaluate different analogues and better outcome of the
reasoning process (Chuderski et al., 2012; Deary, 2001; Kyllonen and
Christal, 1990; Unsworth et al., 2014).

Parallel developments in cognitive neuroscience have advanced our
understanding of the neural mechanisms of AR. A seminal fMRI study of
AR was conducted by Bunge et al., (2005), who demonstrated that core
facets of AR engaged specific cortical regions, with anterior left inferior
prefrontal cortex (PFC) underlying retrieval of relevant semantic infor-
mation, left frontopolar mediating integration demands (associated with
feature mapping complexity), and right dorsolateral PFC supporting
response selection. Evidence from an fMRI experiment of visuospatial
(‘non-semantic’) AR demonstrated that feature mapping complexity is
associated with increased activity within the lateral PFC and lateral
frontal pole in both hemispheres. When there was greater need to resolve
interference (discarding irrelevant features, as part of the analogy eval-
uation and response selection process), activation increased only in the
lateral PFC (Cho et al., 2010). On the other hand, impaired visuospatial
AR was reported in individuals with left rostrolateral prefrontal injury,
indicating that this brain region also plays central role in relational
integration and feature matching (Urbanski et al., 2016).

The above fMRI literature has primarily addressed the role of regions
within PFC, in AR. However, non-PFC regions have been also reported to
play a central role in AR. In a whole brain fMRI study of visuospatial AR,
Geake and Hansen (2010) found that the left ventrolateral, right dorso-
lateral and bilateral tempo-parietal cortices were preferentially recruited
with greater feature mapping demands (associated with an increase in
AR complexity). Employing a visuospatial AR task, Watson and Chat-
terjee (2012) observed activity within left rostrolateral PFC associated
with the integration of relational knowledge during AR. Watson and
Chatterjee also found that higher activity within the inferior frontal gyri,
evident during visuospatial AR, is associated with greater inhibition and
response selection demands (associated with an increase in the number
of competing possible analogues), whereas inferior parietal activation is
associated with greater respective reliance on spatial relation informa-
tion. A recent meta-analysis of the fMRI literature demonstrated that a
bilateral frontoparietal network is recruited across a broad spectrum of
AR tasks. This network included the left rostrolateral PFC, bilateral
insula, posterior parietal cortex, few clusters in the posterior region of the
inferior frontal gyrus (IFG), middle frontal gyrus (MFG), superior frontal
sulcus, and medial PFC. Moreover, contrasted with semantic AR, visuo-
spatial AR was found to be associated with greater activation in the MFG,
lateral IFG, angular gyrus, superior and inferior parietal lob (SPL/IPL)
and the fusiform gyrus (Hobeika et al., 2016).

In contrast to the ample neuroscience literature that examines
sensitivity to task-related demands in AR, at the group-level, very few
studies have directly investigated neurocognitive mechanisms underly-
ing individual differences. In a task-based fMRI study, Preusse et al.
(2011) compared the visuospatial AR brain activation of a group of in-
dividuals scoring high on tests of fluid intelligence relative to that of a
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group with average fluid intelligence scores. The authors reported
greater parietal activation in high fluid intelligence individuals compared
to individuals with average fluid intelligence, and a reverse effect in the
ventral anterior cingulate cortex and the ventromedial frontal cortex
(medial Brodmann Area 10; part of the default mode network). Preusse
and colleagues suggested that high fluid intelligence may confer atten-
tion control and working memory processes that facilitate visuospatial
AR, mediated by parietal cortex. On the other hand, a voxel-based
morphometry study showed that visuospatial AR (with stimuli varying
in perceptual characteristics such the font type, size, color and orienta-
tion) was associated with individual differences in cortical volume within
the left rostrolateral PFC (including Broca's area) and the anterior part of
the inferolateral temporal cortex (including Wernicke's area). A com-
plementary tactography of diffusion-weighted images further demon-
strated that these two regions exchange information via the arcuate
fasciculus (Aichelburg et al., 2016).

The limited understanding of the neural basis of individual differ-
ences in AR reflect three challenges. First, AR is a multifaceted cognitive
process that engages several neural mechanisms that are likely to be
difficult to characterize accounting only to a few frontal brain regions.
Second, there are only few published neuroimaging studies that have
directly investigated individual differences in AR. These do not provide a
consistent account of mechanisms underlying individual differences in
AR, and, in each case, the sample size was too small to account for
multiple possible sources of individual differences in AR. Third, previous
neuroimaging studies of AR have primarily employed univariate ana-
lyses, which does not enable exploring the possibility that individual
differences in AR are best explained by a weighted sum of activation in
multiple brain regions. Thus, previous studies could not inform us about
the respective contribution of different brain regions to the individual AR
capability. Moreover, most earlier AR studies identified brain regions
sensitive to an experimental task manipulation, but they do not discuss
the nature of interdependencies between brain regions underlying indi-
vidual differences in AR and brain regions sensitive to the associated AR
demands (e.g., the analogy relational complexity, determined by the
number of task-relevant features).

To address the above concerns, the present study examined neural
mechanisms associated with individual differences in AR (where AR
capacity was measured as the participant correctness/accuracy in the AR
tasks) by testing a large sample of participants using functional MRI
(fMRI). Each participant performed multiple AR trials with high rela-
tional complexity (High-RC) and low relational complexity (Low-RC).
Whole-brain multivariate analyses (implemented by a multiple kernel
learning machine) were used to find the brain network underlying in-
dividual differences in each of the two relational complexity conditions
separately, and the network of brain regions sensitive to the relational
complexity manipulation (group-level, condition effect). The multiple
kernel learning machine enabled the execution of a whole-brain multi-
variate analysis with relatively low computational demands and without
relying on any prior assumptions regarding the role of key brain regions
in AR (e.g., unlike a seed-based analysis). Effectively, this analysis
enabled detecting a sparse brain model, which is based on a subset of
brain regions with significant contribution to AR (while also weighting
contributions of the individual voxels within those brain regions). To
better understand the role of the brain regions identified as taking part in
AR, we further assessed the degree of co-activation amongst all those
brain regions, sorting them into a few networks of co-activated regions,
and assessing how these networks relate to known functional networks in
the human brain.

This allowed to conclude which of the following characterizes the
neurocognitive mechanisms underlying individual differences in AR: (i)
AR primarily relies on a few brain regions (associated with cognitive
functions such as feature mapping, attention control, working memory
and response selection). These regions, sensitive to group-level effects
(measured as the analogy relational complexity), would also underlie
evident individual differences in AR. (ii) AR relies on a distributed brain
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network where multiple interdependent processes contribute to AR. Each
process executes a basic cognitive function and its level of engagement
depends either on the individuals' skills, on the associated task demands,
or on both. In such a scenario, a whole-brain multivariate analysis would
detect a network in which some brain regions are sensitive only to the AR
relational complexity, whereas others would contribute to individual
differences in AR. While (i) suggests that AR primarily relies on a few
brain regions, regardless to task difficulty or the individual competence,
(ii) points to the possibility that AR may reflect the application of alter-
native strategies supported by a network of multiple brain regions. Each
region accounts to a more basic cognitive process, where the respective
contribution of at least some of those processes to AR substantially differs
between individuals. For example, two individuals may have similar AR
capabilities. However, one may rely more on her feature mapping ca-
pabilities, whereas the other would rely on working memory and atten-
tion control.

2. Materials and methods
2.1. Participants

Participants were recruited from the Urbana-Champaign community
as part of a cognitive training intervention study. Participants were right-
handed, with normal or corrected to normal vision and no history of
neural or psychiatric disorders. The pre-intervention People Pieces
Analogy (PPA) experiment included a total of 296 participants. Since the
primary objective here was testing individual differences, we used con-
servative inclusion criteria when accounting for head movements and
brain image quality, minimizing irrelevant individual differences in the
sample data (see details below). This resulted in exclusion of 66 partic-
ipants from the analysis. An additional participant was excluded due to
very low response rate. The remaining 229 participants included 118
females, and their mean age was 23.4 years (SD = 5.1; range = 18-43).
Participants provided informed written consent in accordance with a
protocol approved by the University of Illinois Institutional Review
Board, and they were paid for participation.

2.2. The People Pieces Analogy (PPA) task

Participants performed a modified version of the People Pieces

A. Stimuli examples B. Low-RC trial

j? k

color
gender
height
width

color
gender
height
width
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Analogy (PPA) task (for a detailed description see Cho et al., 2010;
Sternberg, 1977) in an fMRI scanning session. The session included three
rapid event-related fMRI scans, each had 54 trials and was approximately
10 min long (totaling 162 AR trails in ~30 min of functional scans).
Order of the three scans and trial-type within scans were counter-
balanced across participants. E-Prime® 2.0 (Psychology Software Tools,
INC) running on a Windows7 PC was used for stimuli presentation and
for the recording of participants' responses. Stimuli were presented on a
mirror mounted on the fMRI scanner head coil. Responses were recorded
using an MRI compatible response box. Prior to the scanning session,
participants had a short practice session outside the scanner.

Each PPA AR problem (trial) consisted of two pairs of cartoon char-
acters (an analogy source pair, and an analogy target pair). Characters
within each pair were characterized by four binary feature: color, width,
height and gender (a total of 2% — 16 distinct characters). In each trial the
participant was required to determine if the relational similarity (anal-
ogy) between the 2 pairs was valid (index finger key-press) or invalid
(middle finger key-press), accounting for the subset of feature cued to be
task-relevant. Specifically, starting at the onset of the trial a written list of
the four feature was displayed in black font in the center of the screen to
the right of the paired characters used as the analogy source. 1.7 s after
the onset of the trial the font color of either one feature word, in low
relational complexity (Low-RC) trials, or three features words, in high
relational complexity (High-RC) trials, switched to red indicating the
task-relevant feature/s. 0.3 s later, a pair of characters used as the anal-
ogy target appeared to the right of the features list (Fig. 1 and Supple-
mental 2; see Cho et al., 2010 for a detailed description of a similar
procedure). The analogy source and target were presented together until
the participant decided (within a time interval limited to 65) if the
analogy was valid or not. Total trial duration was 8s.

The total of 162 trials (from the three scans) included 60 valid
analogy Low-RC trials (see example in Fig. 1B) and 60 valid High-RC
trials (see example in Fig. 1C). In addition to these, there were 21
invalid analogy trials in each level of relational complexity. In these
invalid analogy trials, there was a between-pair relational similarity
mismatch on exactly one of the cued/relevant feature(s), whereas the
between-pair relation in the non-cued feature(s) always matched. The
introduction of invalid trials prevented participants from ‘automatically’
approving the validity of an analogy without paying attention to the cued
features. Note that levels of reasoning difficulty in invalid trials cannot be

C. High-RC trial
i1
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width
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Fig. 1. Stimuli examples and trial composition. (A) Four character stimuli examples. Characters could have differed in color, width, height and gender. (B) Low-RC
trial where only one feature (color) is cued as relevant. Note that in this example the analogy source (left pair) and target (right pair) share relational similarity in all
four feature (valid analogy, with no interfering feature). (C) High-RC trial where three feature (color, height and width) are cued as relevant. Note that in this example
the analogy source and target do not share relational similarity in gender (a valid analogy, with an interfering feature). See Supplemental 2 for additional

trial examples.
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assessed deterministically, primarily since invalid High-RC analogy trials
could vary in the extent to which subjects are engaged in relational
integration, as they could reject the analogy by simply searching for the
nonmatching relation. For this reason, invalid trials were excluded from
later analysis. The 1:3 valid-invalid trial ratio used here was like those
used in previous studies (e.g., Cho et al., 2010).

In half of the valid analogy Low-RC and High-RC trials there was one
interfering feature, an irrelevant feature with a relational inconsistency
between the source and target (e.g., man/woman vs. woman/woman in
Fig. 1C). 20% of the valid trials were “catch” trials, in which the analogy
source character pair was omitted 1.7 s after the trial onset. The catch
trials were randomly intermixed with the standard trials, and they
encouraged participants attending all feature in the analogy source
character pair starting at the onset of the trial, prior to the cue onset. The
composition of catch trials was otherwise identical to standard trials
(with an equal number of Low-RC and High-RC catch trials). Between the
offset of one trial and the beginning of the next there was a fixation-only
interval with random jittering between 2 and 8 s (in addition to the time
left from the response interval following the participant key-press). This
design allowed keeping the visuospatial complexity and the participants'
engagement in the Low-RC and High-RC trials comparable. Due to the
relatively small number of error trials, and to reduce the variability in the
modeled brain activation associated with participants' responses, only
valid trials in which the participant responded correctly were used in the
later fMRI analysis.

2.3. Data analysis tools

Data analysis was performed using SPM-8 (Statistical Parametric
Mapping, Wellcome Trust Centre for Neuroimaging, London, UK),
PRoNTo-2 (Pattern Recognition for Neuroimaging Toolbox, Wellcome
Trust Centre for Neuroimaging, London, UK), IBM® SPSS-22, and analysis
scripts specifically developed for this project (MathWorks® Matlab-
2014b/2015b).

2.4. MRI and fMRI data acquisition

Imaging data was acquired on a 3.0 TS 3T Magnetom Trio scanner
using a 32-channel head coil. Gradient echo localizer images were ac-
quired to determine the placement of the functional slices. A suscepti-
bility weighted single-shot EPI (echo planar imaging) method with BOLD
(blood oxygenation level-dependent) was used for functional images
acquisition with the following scan parameters: TR = 2000 ms,
TE=25ms, flip angle=90°, matrix size=92x92, field of
view =230 x 230 x 126 mm, slice thickness=3mm (0.316 mm gap),
number of slices=38 (an effective functional voxel size of
2.5 x 2.5 x 3mm). A total of 313 images (TRs) were recorded in each
scan. Slices were acquired in an interleaved manner. The high resolution
T1 weighted 3D image was acquired with the following parameters:
0.9 mm isotropic voxels, TR = 1900 ms, TI =900 ms, TE = 2.32 ms, with
GRAPPA and an acceleration factor of 2. The duration of the anatomical
scan was 4 min and 26s.

2.5. Image preprocessing

Preprocessing involved: (i) Slice timing; (ii) Realignment of all
functional images to the 24th image. (iii) Co-registration of the func-
tional and anatomical images; (iv) Normalization of the T1 image to the
MNI305 template image. Linear and non-linear normalization parame-
ters were then applied to the functional images. (v) 5 x 5 x 6 mm full
width half maximum (FWHM) Gaussian kernel smoothing. (vi) We
confirmed that movement was kept below 3 mm (in any of the x, y, or z
dimensions) within a scan using ArtRepair (an SPM add-on; Mazaika
et al., 2009). Outlier images (up to 1% of the images in a scan) were
realigned by ArtRepair, interpolating between the two adjacent
non-outlier images. Participants with more extensive or more frequent
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head movements were excluded. In the subsequent general linear model
(GLM) analysis, noisy images were deweighted. To reduce variability in
neural activity within each experimental condition, trials in which the
participant responded correctly were modeled separately from error
trials or trials in which the participant did not respond on time, with
onset time-locked to the beginning of each trial and event offset deter-
mined by the participant response timing (Cho et al., 2010; Hammer
et al., 2015a, 2015b). (vii) A high pass filter with a cut-off of 132s.

2.6. fMRI modeling and image rescaling

Trials were modeled into seven basic event-types, based on the trial
characteristics and the participant response: (i) valid Low-RC without
interference; (ii) valid Low-RC with interference; (iii) valid High-RC
without interference; (iv) valid High-RC with interference; (v) invalid
Low-RG; (vi) invalid High-RC; (vii) all trials in which the participant
made an error (or did not responded on time). For the regression and
classification analyses, we computed the mean of (i) and (ii) (mean brain
image, based on all the trials in which the participant correctly identified
valid Low-RC analogies), and the mean of (iii) and (iv) (mean brain
image, based on all the trials in which the participant correctly identified
valid High-RC analogies). (v), (vi) and (vii) were omitted from later
analysis. Beta values in the Low-RC and High-RC images of each partic-
ipant were rescaled into z-scores (rescaling was done across all the voxels
within each functional brain image). These transformed images are
comparable to t-maps where each voxel is contrasted with the entire
brain image global mean (see Supplemental 5 for univariate analyses that
were based on the subjects' Beta maps without rescaling). The rescaled
images were used as the input of the Simple-MKL machine learning al-
gorithms (see below).

2.7. MRI/fMRI image quality control and head movements tolerance

In addition to the automated artifact detection and correction (using
ArtRepair), brain images were visually inspected. Participants with
evident image artifacts (e.g. brain image cutoff or orbital and temporal
signal loss) were excluded from the analysis. We also excluded partici-
pants with head displacement larger than the size of a voxel, during a
single scan, in any of the translational axes (i.e. 3 mm), or participants for
which more than 1% of the TRs had to be replaced by the ArtRepair
motion correction algorithm.

2.8. Simple multiple kernel learning (MKL) regression and classification
machines

To identify the brain network associated with AR we used the simple
multiple kernel learning (MKL) regression and classification algorithms.
These machine learning algorithms are based on the gradient decent of
the support vector machine (SVM) objective value, and they share with
the SVM primary characteristics of maximum margin algorithms
(Chapelle et al., 1999; Lanckriet et al., 2004): (i) usage of kernels; (ii)
absence of local minima; (iii) a capacity to control sparseness, obtained
by acting on the decision hyperplane margin (via a regulating hyper-
paramater); (iv) learning a non-linear function by a linear learning ma-
chine mapping into high dimensional kernel induced feature space. The
primary principle underlying MKL is that an optimized model that is
based on a linear combination of multiple basis kernels, where each basis
kernel is based on a subset of features (i.e., voxels within a single brain
parcel), can approximate the optimized model based on a single kernel
computed by accounting for all features (i.e., all the voxels in the brain).
The optimized MKL model can be a convex combination of only part of
the basis kernels, and thus it may account to only a subset of the input
features. Specifically, the Simple-MKL uses weighted L2-norm regulari-
zation for computing each basis kernel (i.e., weighting the contribution
of voxels within each parcel), where the model sparsity at the whole
brain level is controlled by a L1-norm constraint on the basis kernels sum
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of weights (i.e., the sum of weights of brain parcels). The algorithm
iteratively determines the optimal combination of kernels by a gradient
descent (convex optimization) wrapping a standard simple-SVM solver
(see details in Rakotomamonjy et al., 2008; Xu et al., 2010). These
properties make the Simple-MKL an efficient large-scale regularization
algorithm in scenarios where the initial number of features is similar to,
or greater than, the number of the handled data points (Tuia et al., 2010).

In whole brain fMRI data analysis, the typical initial number of fea-
tures (tens of or even hundreds of thousands voxels) is a few orders of
magnitude greater than the typical number of the data points (i.e., the
number of participants' brain images that had to be classified; few hun-
dreds at best). Here we used a brain atlas with 400 brain parcels, pre-
determined based on functional connectivity (Craddock et al., 2012), to
parcellate the participants' brains into parcels of functionally and
spatially associated voxels (subsets of likely highly correlated features).
Applying a gray-matter mask, excluding ventricles and white matter
voxels (Hammer et al., 2015b; Qureshi et al., 2017), resulted in reducing
the number of effective parcels (with primarily gray-matter voxels) to
291, out of which 241 had a volume of at least 50 functional voxels. The
Simple MKL regression and classification machines were then used to
compute the basis kernel for each parcel using L2-norm regularization
(weighting voxels within each parcel). The weight of each parcel in the
regression/classification models was computed using a L1-norm regula-
rization, constraining the sum of the absolute weights to 1. This resulted
in sparse regression/classification models based on a relatively few
parcels (due to the L1-norm regularization), where the respective weight
of each parcel in each model was determined based on a relatively large
portion of its voxels (due to the L2-norm regularization). This made the
discovered models more interpretable and substantially reduced the odds
for discovering overfitted models, as the independent variables impact-
ing the model fit are the non-zero weight base-kernels, instead of the
lower-level features (that is, the non-zero weight parcels, instead of all
the voxels in the brain).

The Simple-MKL requires setting of the SVM hyperparameter C,
balancing between minimal error on the training sample and the size of
the margin of the SVM decision hyperplane (greater margin reduces the
likelihood for overfitting). The selection of the hyperparameter C impacts
the sparsity of the discovered model, where larger C values are associated
with less sparsity, lower error rate on the training sample, but smaller
margin and higher likelihood for overfitting. Here hyperparameter
optimization involved a first pass search using hyperparameter values
between 107°-10% with logarithmic steps {1075, 1074, ...10%, 10°%},
followed by a second pass of random search around the optimal value
discovered in the first pass (within +50% of the first pass optimal value;
Wainer and Cawley, 2017). Performances of the reported below regres-
sion and classification models were similar across a broad range of
hyperparameter values (all three models performed best with hyper-
parameter values between 10~°-1). Model performance for each hyper-
parameter value were assessed using 5-fold cross-validation (in each fold
the algorithm was trained using 80% of the sample and tested on the
remaining 20%). The model with minimal cross-validation error was
then selected. Note that the model learning and hyperparameter opti-
mization were independent (for each tested model the hyperparameter
optimization was done independently using an additional 5-fold cross
validation in a nested inner loop; Wainer and Cawley, 2017).

We used the Simple-MKL regression machine to find models asso-
ciated with individual differences in AR, in the High-RC and Low-RC
conditions separately. Input for these two regression analyses were
the rescaled High-RC and Low-RC brain images (mean activation im-
ages, based on all the valid trials in which the participant answered
correctly, in each of the two relational complexity conditions) as the
independent variables (predictors), and the respective participants'
performance as the dependent variable (predicted). We used the
Simple-MKL classification machine to find a model differentiating be-
tween the High-RC and Low-RC conditions (differentiating between the
two types of brain images by identifying brain regions sensitive to
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relational complexity; group-level effect). Here the dependent (pre-
dicted) variable was the image label (High-RC or Low-RC). That is, both
the regression and classification implementations of the Simple-MKL
were based on the gradient decent of the support vector machine
(SVM) objective value. However, for the regression machine the pre-
dicted variable was on a continues ratio-scale (participants' AR capa-
bility), whereas for the classification machine it was nominal/
categorical (High-RC and Low-RC images labeled as +1 and —1).

2.9. Multidimensional scaling (MDS) and k-means clustering

The Simple-MKL machines enabled identifying the network of brain
parcels associated with individual differences in AR (the regression
models; individual AR capacity measured as task accuracy), and the
network of parcels showing sensitivity to relational complexity (the
classification model). Furthermore, the parcels weights indicated the
respective contribution of each parcel to the regression/classification
model. However, these models do not show, directly, how activation in
one parcel relates to activation in others. Accordingly, we conducted
additional analysis, considering between-parcel similarities in patterns of
activation. From each parcel, we extracted the mean activation (as
rescaled Beta value) for each participant in the High-RC and Low-RC
conditions (separately), accounting only for activation in voxels with a
weight > 0.01 in at least one of the regression/classification models
discovered by the Simple-MKL machines (see Supplemental 3). This
resulted in each parcel being characterized by 458 data points (229
participants; two conditions). To simplify the presentation of similarities
in activation patterns between parcels, we used non-metric multidi-
mensional scaling (MDS), minimizing the stress cost function while
keeping the number of the MDS dimensions small (see Results). Unlike
metric MDS, the non-metric MDS finds a non-parametric monotonic
relationship between the dissimilarities in the item-item matrix (here it is
a parcel-to-parcel similarity matrix). This is done in addition to the
computation of the Euclidean distances between items and the location of
each item in the low-dimensional space. That is, the scaling into lower
dimension space was determined by the data, instead of a few parameters
of a hypothesized model. k-means clustering was then applied to classify
parcels, in the MDS space, into few networks of co-activated parcels.

3. Results
3.1. Behavioral performance

We found a significant (Pearson) correlation between accuracy in the
High-RC and Low-RC conditions, r(229) = 0.61, p < 0.0001 (two-tailed;
Fig. 2A). An analysis of variance shows that the mean AR accuracy in the
Low-RC condition was significantly higher than the mean accuracy in the
High-RC condition, F(1, 228) = 152.26, p < 0.0001, 2 = 0.40 (Fig. 2B).
In the Low-RC condition there was significant negative correlation be-
tween accuracy and reaction time r(229)=—0.25, p < 0.0002 (two-
tailed), whereas in the High-RC condition there was significant positive
correlation between accuracy and reaction time r(229) =0.13, p < 0.05
(two-tailed). That is, higher competence in Low-RC trials was evident as
better accuracy and shorter reaction time, whereas in High-RC trials
there was a speed-accuracy tradeoff.

3.2. Brain-behavior High-RC Simple-MKL regression model

Using the Simple-MKL machine for finding the brain-behavior
regression model for the High-RC data resulted in a model with
r229)=0.37 (R®>=0.137; predictive/cross-validated ~ variance
explained), with mean squared error (MSE) = 0.94, estimated based on 5-
fold cross-validation (i.e., in each fold the machine was trained using
80% of the data and was tested on the remaining 20%; Fig. 3A). A per-
mutation test with 200 permutations (randomly pairing the brain image
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Fig. 2. Participants' behavioral performance (AR accuracy). (A) Correlation between AR accuracy in the Low-RC and High-RC conditions. Each data point represents a
single participant (for this presentation, overlapping data points were slightly jittered). (B) Mean AR accuracy in the Low-RC and High-RC conditions. Thick gray bars

represent SE and thin black bars represent SD.
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Fig. 3. Predictive power of the regression and classification models, each estimated based on 5-fold cross-validation (see also Supplemental 3). (A) Predictions in the
High-RC regression model. (B) Predictions in the Low-RC regression model. In the two regression models' scatter plots (Panels A and B), each data point represents a
single participant. The vertical axis represents the participant's actual AR accuracy and the horizontal axis represents the participant's AR accuracy as it was predicted
by the Simple-MKL machine based on the participant's pattern of brain activation in the respective relational complexity level. (C) Receiver Operating Curve (ROC)
presenting the overall cross-validation accuracy in the High-RC versus Low-RC classification model (the capability of the Simple-MKL machine to determine if a brain

image represent activation in the High-RC or Low-RC tasks).

of each participant with the AR accuracy score of another) shows that a
model with such predictive power is unlikely to be discovered by chance,
with p < 0.005 (reflecting the probability finding by chance a model with
R?>0.137 or MSE < 0.94).

The significance of each brain parcel discovered in the previous step
was further assessed by computing the parcel mean absolute weight and
the standard error of the mean, based on the parcel's five weights
computed in the five iterations (folds) of the cross validation. One-
tailed z-test was used to decide if a parcel is with greater than
chance-level weight, with a chance-level threshold =0.004 =1/241
(241 was the number of parcels with more than 50 functional voxels).
False discovery rate (FDR) correction was computed by accounting for
parcels with a mean absolute weight > 0.004, and by assuming positive
dependence (Benjamini, and Yekutieli, 2001). Significance of parcel
contribution was determined based on p < 0.01 (FDR corrected). The 15
parcels with significant weights in the High-RC regression model are
listed in Table 1 (see weight map in Fig. 4A and absolute respective
weights in Supplemental 3A). This analysis indicates the left lingual/-
cuneus, the bilateral medial superior frontal gyrus (BA8) and the left
lingual parcels as part of the primary contributors to the High-RC in-
dividual differences model.
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3.3. Brain-behavior Low-RC Simple-MKL regression model

Using the Simple-MKL machine for finding the brain-behavior
regression model for the Low-RC data resulted in a model with
r(229) =0.21 R*= 0.044;  predictive/cross-validated  variance
explained), p=10.03; MSE=0.94, p=0.015 (significance determined
based on 200 permutations). Nine brain parcels were found to have
significant weights in the Low-RC regression model with p < 0.01 (FDR
corrected). See Figs. 3B and 4B, Table 1, and Supplemental 3B. This
analysis indicates that the right lingual/cuneus, the bilateral medial su-
perior frontal gyrus (BA8), and the left lingual parcels to be part of the
primary contributors to the Low-RC individual differences model.

3.4. High-RC versus Low-RC Simple-MKL classification model

Cross-validation accuracy in the Simple-MKL High-RC versus Low-RC
classification model was 79.5%, p < 0.005 (significance determined
based on 200 permutations). The classification accuracy was balanced,
with 78.6% accuracy in classifying Low-RC images, and 80.3% accuracy
in classifying High-RC images. Eighteen brain parcels were found to have
significant weights in the High-RC versus Low-RC classification model at
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Table 1

Listing the brain parcels associated with AR. parcels sorted by the rightmost
column, indicating the parcel's network (VS = Visuospatial, Ex = Executive,
Def = Default, Sal = Salience; in brackets R/G/B/P indicate color labels as
appeared in Fig. 5). (+) indicates either positive activation-behavior correlation
or High-RC > Low-RC, whereas (—) indicates the reveres. See also Supplemental
7 for a model summary.

Brain parcel High-RC Low-RC High-Low Network
B-Cuneus +) VS (R)
R-Cuneus +) VS (R)
L-Lingual/Cuneus ) ) ) VS (R)
R-Lingual/Cuneus +) ) ) VS (R)
L-Lingual €] +) ) VS (R)
R-Lingual ) CD] ) VS (R)
B-Precuneus +) ) VS (R)
R-Precuneus +) VS (R)
L-MidOccipital +) VS (R)
R-FFG +) VS (R)
L-FFG +) Ex (G)
L-SPL [CD] ) Ex (G)
L-IFG(BA44) €] (€D Ex (G)
R-IFG +) Ex (G)
L-IFG(BA46) +) Ex (G)
L-MFG (+) Ex (G)
B-MedFG/ACC(BAS8) +) +) +) Ex (G)
B-CaudateHead +) Def (B)
R-STG (=) Def (B)
B-Paracentral -) Def (B)
B-PCC =) Def (B)
L-ACC -) Def (B)
L-MedFG/ACC(BA10) (-) Def (B)
B-MedFG/ACC(BA10) (-) Def (B)
L-Insula -) Sal (P)
L-PostInsula +) Sal (P)
R-Insula -) Sal (P)
L-Postcentral -) Sal (P)
R-MidLOC -) Sal (P)

p < 0.01 (FDR corrected). See Figs. 3C and 4C, Table 1, and Supplemental
3C. This analysis indicates the left postcentral, the right superior tem-
poral gyrus, and the left insula parcels to be part of the primary con-
tributors to the High-RC vs. Low-RC classification model. Conducting the
classification analysis using the non-rescaled Beta maps yielded similar
results, with cross validation accuracy of 82.1% (classification accuracy
of 79.5% for Low-RC and 84.7% for High-RC; AUC = 0.88) and with a
similar weight map.

3.5. Networks of co-activated brain parcels

To understand the function of a brain region it is useful to identify other
brain regions functionally associated with it, besides understanding the
conditions that induce changes in activation within this region. Accord-
ingly, we show how brain parcels relate to one another by accounting for
activation levels (as mean Beta values; see Methods for more details) in
both relational complexity conditions, and across all participants. First, in
Fig. 5A we present the similarities in patterns of activation between the
brain parcels in a three-dimensional space such that it preserves the
between-parcel similarities in beta values as much as possible (computed
using MDS ALSCAL method; data for each brain parcel were a 458-long
vector, based on mean activation of each participant, in both Low-RC
and High-RC). This multidimensional scaling (MDS) model preserves
71.7% of the variance in the original data, with a stress cost function
value = 0.25. Reducing the number of dimensions from three to two
resulted in a 25% drop in the explained variance, whereas increasing the
number of dimensions to four resulted in only marginal increase of less
than 5% in the explained variance (as it also compromises the clarity of the
model representation). With few exceptions, on the left side of d1 (hori-
zontal axis) are dorsal brain regions whereas ventral brain regions are on
the right; lower-level brain functions are at the bottom of d2 (vertical axis)
and higher-level functions are at the top; and in d3 (color) brain regions
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associated with the default network are with shades of blue (low values),
executive brain regions are with shades of green (intermediate values), and
visual brain regions are with shades of red (high values).

In Fig. 5B (and 5C) we present the results of a k-means clustering (with
k = 4) of the brain parcels based on their respective proximities in the MDS
space. This clustering analysis resulted in one cluster comprising lower-
level visuospatial parcels (color-labeled red), a cluster comprising execu-
tive parcels (green), a cluster comprising default network parcels (blue),
and a cluster comprising salience attention network parcels (purple). The
total number of brain regions to be clustered (29) constrained the maximal
number of clusters (k). On the other hand, using less than four clusters
compromised the interpretability of the observed networks. Using k=2
resulted in one cluster that was positively associated with AR (included all
of the visuospatial and executive brain regions) and another that was
negatively associated with AR (included most of the default and salience
brain regions, to exclude the caudate head and the posterior insula). Using
k=3 resulted in part of the salience network brain regions clustered
together with the executive and visuospatial brain regions, and part clus-
tered with the default network (see also Table 1).

4. Discussion

We employed task-based fMRI to study neurocognitive mechanisms
associated with individual differences in analogical reasoning (AR). A
whole brain multivariate analysis resulted in a novel finding, showing
that only part of the brain regions associated with individual differences
in AR (measured as the accuracy in AR tasks) capabilities were also
sensitive to the analogy relational complexity. Overall, we identified 29
brain parcels that were significantly associated with AR. Using a clus-
tering algorithm, we sorted these into four networks, each with a handful
of co-activated parcels: One network comprised primarily dorsomedial/
ventrolateral prefrontal brain regions; a second network comprised vi-
suospatial brain regions including the cuneus, lingual, precuneus, middle
occipital and right FFG; a third network comprised a default mode
network parcels including the ventromedial MedFG/ACC (BA10), PCC,
paracentral and right STG; a fourth network comprised salience attention
network parcels including the left and right insula. Furthermore, the
current findings demonstrate how individual differences in higher-level
cognition can be better explained by accounting to the weighed contri-
bution of multiple brain regions, where respective contributions of those
regions rely on the associated task demands.

We demonstrated how the Simple-MKL machine (but possibly other
whole-brain multivariate analysis procedures with large-scale regulariza-
tion, at the brain parcel level) can be effective in identifying and charac-
terizing neurocognitive mechanisms underlying higher-level cognitive
processes. To better interpret the Simple-MKL machine results, we iden-
tified brain regions with significant contribution to AR accounting to both
the mean weight and the weight variance across all folds in the Simple-
MKL machine cross-validation procedures (see Supplemental 3). This
enabled to discard from the reported AR model brain regions with
respective large weights that nevertheless likely reflect noise, and on the
other hand to identify brain regions with apparent small weights that are in
fact significantly associated with AR. These supplementary analyses may
be affected by the number of folds (where large number of folds may in-
crease the odds for overfitted model, as well as the odds for a type-1 error
when identifying brain regions with significant weights). Therefore, we
employed a conservative approach, keeping a small number of folds in the
Simple-MKL machine cross-validation procedures and by using a conser-
vative statistical threshold (p < 0.01, FDR corrected, Cohen's d > 0.5). For
a related discussion regarding methods for improving the interoperability
of multivariate (backward) models see Haufe et al., 2014).

4.1. AR and dorsomedial/ventrolateral prefrontal (central executive)
activation

Higher relational complexity (group-level effect) and better
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A. Weight map of the predictive multivariate regression model for High-RC (parcel-based)

Higher Weight
+ -
Lower Weight

Higher Weight

Lower Weight

D. Brain network underlying individual differences in analogical reasoning and sensitivity to reasoning complexity

O

(| o
) i > o
SRS

+45° f‘.' o +135°
R

K
&

© Only High-RC individual differences (O Only Low-RC individual differences @ Only High-RC vs. Low-RC differences

@=0+0

@=0+0

@=0+0+0

Fig. 4. Brain maps. (A) High-RC regression model weight map (brain parcel level). Yellow indicates higher weight with positive correlation with AR accuracy. Red
indicates lower weight with positive correlation. Green indicates higher weight with negative correlation. Blue indicates lower weight with negative correlation. (B)
Low-RC regression model weight map (parcel level). (C) High-RC versus Low-RC classification model weight map (parcel level). Warm colors indicate greater acti-
vation in High-RC compared to Low-RC. Cold colors indicate greater activation in Low-RC compared to High-RC. (D) Color-labeled parcels, indicating parcels taking
part in either regression model or the classification model, or in a combination of few models. See Supplemental 1 for examples of respective simulated scenarios. See
Supplemental 4 for details about the Simple-MKL voxel weighting within each parcel. See Supplemental 5 for corresponding univariate t-maps.

individual AR capability were both associated with higher dorsomedial
and ventrolateral prefrontal activation. In all these brain parcels (see
Table 1), activation level was positively correlated with individual dif-
ferences in the High-RC condition. However, only the dorsomedial B-
MedFG/ACC (BA8) and left IFG (BA44) also showed significant sensi-
tivity to relational complexity (High-RC > Low-RC), where the dorso-
medial B-MedFG/ACC was the only executive brain region associated
with the individual AR capability in both relational complexity levels
(Fig. 4, Table 1 and Supplemental 3). Early studies showed that better
response selection, specifically in demanding cognitive tasks, is associ-
ated with higher neural activation in the dorsomedial frontal and ante-
rior cingulate cortices (de la Vega et al., 2016; Platt and Huettel, 2008).
Higher activation in the dorsomedial B-MedFG/ACC was associated with
either better AR (individual differences) or with greater relational
complexity (task demands). We suggest that this brain region plays a
central role in evaluating the analogy validity towards final stages of
response selection.

In the left IFG (BA44) we found higher High-RC than Low-RC acti-
vation, and a significant positive correlation between activation level and
AR capability, only in the High-RC task. The left IFG BA44 comprises
Broca's area, a brain region playing a central role in semantic processing

1000

and serial working memory (Nee et al., 2013). The manipulation of
relational complexity in the current study involved an increase in the
number of visual features that could have been processed successively
(Halford et al., 1998). Specifically, in the High-RC tasks the number of
cued features was larger, increasing working memory load. Similarly, in
the left SPL (part of the working memory network) there was greater
High-RC than Low-RC activation, and positive correlation between
activation and High-RC capability. This left hemisphere High-RC later-
alization is consistent with theories signifying that the left hemisphere is
primarily associated with analytic/serial processing, whereas the right
hemisphere is primarily associated with holistic/parallel processing
(Aichelburg et al., 2016; Vendetti et al., 2015).

Unlike the left IFG BA44 (and left SPL), the left IFG BA46 and the
adjoined left MFG (also part of BA46) were only positively correlated
with AR capability in the High-RC task, with no significant sensitivity to
relational complexity. The dorsolateral PFC (lateral BA46 and BA9) has
been reported to play a central role in sustained attention and in the
manipulation of both serial and spatial information in working memory
(Nee et al., 2013). Our findings suggest that while levels of activation in
the left IFG (BA44) are associated with the objective amount of infor-
mation being processed, as well as with individual proficiencies in using
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A. MDS based on Low-RC and High-RC activation
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B. k-means clustering of parcels in the MDS space
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Fig. 5. Networks of co-activated brain parcels (see Supplemental 6 for between-parcels correlations). BA# in a parcel label indicates the respective Brodmann Area.
(A) MDS based on the Low-RC and High-RC activation, combined, representing similarities in activation level between the parcels in a three-dimensional space
(colorbar signify ‘z-axis’ values in the MDS space, where blue being the lowest). (B) k-means clustering (k =4) of the parcels based on their proximities in the MDS
space. For simplification, parcels are presented in the first two dimensions of the MDS space where colors (red, green, blue and purple) are the clusters labels. (C) A
brain map with networks of co-activated brain regions, color labeled based on the k-means clustering.

this information, dorsolateral PFC (BA46) activation is mostly associated
with the individual information processing proficiencies, when the
cognitive load is high.

4.2. AR and occipito-parietal (visuospatial network) activation

Neural activation in occipital and parietal brain parcels was also
positively associated with AR (Fig. 4; Fig. 5). These visuospatial parcels
can be sorted into a few subgroups. First, the cuneus (BA17) serves as the
primary visual cortex, it executes lower level visual processing and pro-
jects to extrastriate cortices (DeYoe et al., 1996). Here we found that
activation in the cuneus (bilaterally) was significantly affected by rela-
tional complexity, without being associated with individual AR capa-
bility. Since the visual stimuli in the High-RC and Low-RC tasks were
identical, such differences in activation can only be attributed to
top-down attentional modulation, where the High-RC task required ac-
counting for more visual information.

The second subgroup of visual brain parcels was in the lingual gyrus,
which receives information from the cuneus (two of the lingual gyrus
parcels partially overlapped with the cuneus). The primary functions of
the lingual gyrus include complex feature processing, stimuli comparison
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and feature mapping (which are key to visuospatial AR and category
learning), low-level featural working memory and imagery (Albers et al.,
2013; Hammer et al., 2009, 2010; Harrison and Tong, 2009; Xu et al.,
2015). Unlike the cuneus, activation in the lingual gyrus (bilaterally) was
not only significantly associated with relational complexity, but also with
the individual AR capability, in both relational complexity conditions. As
with the cuneus, sensitivity to relational complexity in the lingual gyrus
can only be attributed to top-down attentional modulation. However,
positive correlation between AR capability and lingual gyrus activation
can either indicate that better AR capability requires better top-down
access and retrieval of sensory information available in the lingual
gyrus; or it may indicate that AR capability depends on individual
expertise associated with the capacity to process complex visual features
within the lingual gyrus (thus may provide a bottom-up contribution to
AR).

Beyond the cuneus and lingual gyrus, higher-level parcels within the
visuospatial network (red network in Fig. 5) significantly (positively)
contributed only to performance in the High-RC task (Fig. 4, Supple-
mental 3). These included the left middle occipital cortex, the right
precuneus and the right FFG, which are respectively associated with
regularity detection and feature grouping (Cardin et al., 2011),
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integrative multimodal spatial attention (Shomstein and Yantis, 2006)
and object recognition (Pinel et al., 2014). As reported above, activation
levels in the left FFG and left SPL were also positively correlated with the
individual AR capability in the High-RC task. However, activation pat-
terns in these two brain regions were more like activation patterns in the
central executive network (green network in Fig. 5) than to activation
patterns in lower-level visual cortices. This left hemisphere visuospatial
lateralization is consistent with the reported above left prefrontal
dominance (see Macaluso et al.,, 2000 for a discussion on
back-projections lateralization).

4.3. AR and ventromedial (default network) activation

We found three ventromedial brain parcels to be associated with AR.
Two adjoined, left ACC and left MedFG/ACC (both BA10) parcels
significantly contributed to the High-RC individual differences regression
model, with negative correlation between activation level and AR
capability (Figs. 4 and 5, Supplemental 3). A third, bilateral MedFG/ACC
(BA10) parcel showed greater activation in Low-RC than in High-RC
(note that the correlation between neural activation in this parcel and
AR capability was also negative, but with no significant contribution to
either one of the individual differences regression models; Figs. 5A and 4,
Supplemental 3). Activation pattern in the ventromedial cortices was also
strongly associated with activation in the PCC, paracentral and right STG
parcels, all of which were more activated in the Low-RC task than in the
High-RC task (Figs. 4C and 5).

The ventral MedFG/ACC, PCC and the superior temporal cortex
(including the right-STG) are core modules of the default-mode brain
network, which is involved in both spontaneous and goal-directed in-
ternal mentation. Amongst typical young adults, this network is charac-
terized by higher activation when not being engaged in a specific
behavioral task, and lower activation (deactivation in respect to resting
state levels) as task demands increases. When being engaged in a
demanding visual task, activation in the default network is negatively
correlated with activation in frontoparietal brain regions. It has been
suggested that default network deactivation is associated with the sup-
pression of internally induced irrelevant information. (Andrews-Hanna,
2012; Anticevic et al., 2012; Christoff et al., 2016).

Consistent with earlier findings, we found lower activation in the
bilateral ventral MedFG/ACC, PCC, paracentral and right STG brain
parcels, in the High-RC task compared to the Low-RC task. That is, default
network activation was negatively associated with relational complexity.
Moreover, greater deactivation in the left ventral MedFG/ACC was
associated with better capability in High-RC tasks, indicating that an
effective suppression of the default network is crucial as AR demands
increases. This deactivation likely reduced processing load in the central
executive network, leaving more resources for the AR task. Consistent
with this interpretation, we found greater negative correlations between
default network parcels and executive and visuospatial parcels in the
High-RC task than in the Low-RC task (Supplemental 6). Previous find-
ings (based on Granger causality analysis) suggest that the default
network has a greater impact on its anticorrelated networks than the
other way around, implying that it may alter information processes in
task-positive networks, and compromise task performance (Uddin et al.,
2009; see Preusse et al., 2011 for an alternative interpretation of ventral
MedFG/ACC deactivation in AR).

4.4. AR and insular (‘salience network’) activation

The anterior insula in both hemispheres and the left posterior insula
were associated with AR. Although correlated with one another (Fig. 5,
Supplemental 6), each of these three brain parcels played a distinct role
in AR. The left anterior insula was amongst the brain regions most sen-
sitive to relational complexity, with greater activation in the Low-RC task
than in the High-RC task. While activation in the right anterior insula was
negatively correlated with AR capability in the Low-RC task, activation in
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the left posterior insula was positively correlated with Low-RC capability
(Fig. 4B). Insular pattern of activation was associated with activation in
the left postcentral and right middle lateral occipital cortex, both were
more activated in the Low-RC task than in the High-RC task (Figs. 4C and
5).

Current accounts indicate that the insula plays a central role in
attentional control. The anterior insula has excessive functional con-
nections with both the central executive network and the default
network, suggesting that it mediates between these two brain networks.
The posterior insula plays greater role in modulating responses to
external stimuli. Together with the dorsal ACC, the insula forms a
‘salience network’, which identifies potentially relevant ‘neural events’
(internally or externally originated) in the brain networks with which it
interacts. This may result in allocation of more cognitive resources to
events with potential significance (Goulden et al., 2014; Menon and
Uddin, 2010).

Being a hub controlling information exchange between other net-
works, levels of activation in the insula correlate with levels of infor-
mation exchange. Thus, lower High-RC activation than Low-RC
activation in the left anterior insula may indicate uncoupling between the
central executive network and the default network when AR load in-
creases (see Supplemental 6 for supporting evidences; see Hammer et al.,
2015a for related findings). Patterns of activation in the left posterior
insula and right anterior insula may indicate that better capability in the
Low-RC task required greater exchange of information between left
hemisphere visuospatial brain regions and the central executive network,
while suppressing information exchange in the right hemisphere.

4.5. Summary and conclusions

The analysis employed here revealed a noticeable pattern — lowest-
level visuospatial brain regions (cuneus) were affected only by rela-
tional complexity whereas intermediate-level visuospatial brain regions
(lingual; stimuli comparison and feature mapping) were sensitive both to
relational complexity and to the individual AR capability. This suggests
that processing capacity and sustained representation of visual infor-
mation in the lingual gyrus is the lowest-level processing bottleneck
affecting the individual visuospatial AR capability. Higher-level, func-
tionally more specialized visuospatial brain regions (FFG, SPL) were
associated with individual differences in AR only in the High-RC task.

Amongst the central executive brain regions associated with AR we
also found diverse sensitivity to individual differences versus sensitivity
to relational complexity. The left IFG BA46 and the adjoined left MFG
showed sensitivity only to individual differences in the High-RC task. As
discussed above, the lateral BA46 is involved in sustained attention and
the manipulation of information available in working memory (Barbey
et al., 2013; Nee et al., 2013). However, not being significantly sensitive
to the relational complexity manipulation indicates that activation in the
lateral BA46 is a poor indicator of the objective amount of task-relevant
information. Similarly, the left and right FFG showed sensitivity only to
individual differences in the High-RC task. This indicates that better AR
capability in scenarios that involve complex mapping of multiple features
relies more on these higher-level visual processing brain regions, likely
due to an increase in specialized visual processing demands in High-RC
tasks. The right lateral BA46 (right IFG) may play a role in attentional
control similar to that of the left lateral BA46. However, the right lateral
BA46 may be more limited in its processing capacity, and thus individual
differences in it were evident in the Low-RC task, but not in the High-RC
task.

The left IFG (BA44) and left SPL both play central role in working
memory, with a likely greater role in serial working memory (Newman
et al., 2010). These brain regions were more activated in the High-RC
task, than in the Low-RC task where less visual features had to be
accounted for. Furthermore, the left IFG (BA44) and left SPL significantly
contributed to the individual AR capability in the High-RC task. These
may indicate that a better capability accessing information available in
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these brain regions contribute to AR. Notably, we found the respective
weight of the left IFG to be with very small variability in the 5-fold
cross-validation, both in the High-RC regression model and in the
High-RC versus Low-RC classification model (Supplemental 3). Such
highly consistent mid-size weight indicates that the left IFG plays a
necessary (but not sufficient) role in High-RC AR (in the healthy young
adult population), likely by managing information available in serial
working memory (Barbey et al., 2013). However, its overall contribution
to the individual AR capability seem to be limited, as we found other
brain regions to be with greater contribution to AR (substantially larger
mean weight).

Finally, the dorsomedial B-MedFG/ACC (BAS8) likely integrates in-
formation relevant for determining the validity of the analogy. Besides
the lingual gyrus, the dorsomedial B-MedFG/ACC was the only brain
region in which level of activation was significantly positively correlated
with individual differences in both relational complexity conditions, and
where activation in the High-RC task was greater than in the Low-RC task
(pink parcels in Fig. 4D). Level of neural activation in the dorsomedial B-
MedFG/ACC was also amongst the best predictors (together with the
lingual gyrus) in the High-RC and Low-RC individual differences
regression models (Fig. 4; Supplemental 3). However, levels of activation
in the dorsomedial B-MedFG/ACC and lingual gyrus were not correlated
(Supplemental 6).

The above indicate that AR relies on a combination of visuospatial
expertise and executive skills (see Hammer and Sloutsky, 2016, Hummel
and Holyoak, 1997 and Nikolaidis et al., 2016 for related discussions).
That is, AR does not manifest solely in a few key brain regions at the ‘top
of a hierarchical processing pipeline’. Instead, visuospatial AR capability
emerge from a heterarchical brain network of quasi specialized brain
regions incorporating several partially independent and more basic vi-
suospatial and executive processes, contingent on the individual skills
and on task demands. Together, these brain regions form a flexible yet
robust and efficient network which is in part hierarchical and in part
lateral/horizontal. Such brain system organization enables multiple po-
tential distinct resolutions for multiple computationally complex prob-
lems (Cumming, 2016; McCulloch, 1945; Medaglia et al., 2015), and thus
may be characterized by substantial individual differences in patterns of
neural activation, even amongst individuals with comparable cognitive
skills. Consequently, it is expected that different individuals may improve
their reasoning skills by improving different subsets of basic cognitive
proficiencies (see Supplemental 7 for a model summary and illustrative
examples).

Authors contribution

Conceptualization of Research Objectives: R.H. and A.B.; Data
Acquisition Oversight: E.P.; Data Curation: R.H. and E.P.; Software: R.H.;
Formal Analysis: R.H.; Visualization: R.H.; Writing — Original Draft: R.H.;
Writing — Review & Editing: R.H., A.B., C.H. and A.K.; Resources and
Funding Acquisition: A.B., N.C., A.K. and C.H.

Acknowledgments

This research is based upon work supported by the Office of the Di-
rector of National Intelligence, Intelligence Advanced Research Projects
Activity (IARPA), via Contract 2014-13121700004 to the University of
Illinois at Urbana-Champaign (PI: A. Barbey). The views and conclusions
contained herein are those of the authors and should not be interpreted
as necessarily representing the official policies or endorsements, either
expressed or implied, of the ODNI, IARPA, or the U.S. Government. The
U.S. Government is authorized to reproduce and distribute reprints for
Governmental purposes not-withstanding any copyright annotation
thereon.

We thank John Hummel for insightful discussions, Joachim Oper-
skalski for his comments on this manuscript, and the members in the
Decision Neuroscience Laboratory for their assistance in data collection.

1003

Neurolmage 184 (2019) 993-1004
Appendix A. Supplementary data

Supplementary data to this article can be found online at https://doi.
org/10.1016/j.neuroimage.2018.09.011.

References

Aichelburg, C., Urbanski, M., de Schotten, M.T., Humbert, F., Levy, R., Volle, E., 2016.
Morphometry of left frontal and temporal poles predicts analogical reasoning
abilities. Cerebr. Cortex 26 (3), 915-932.

Albers, A.M., Kok, P., Toni, L., Dijkerman, H.C., de Lange, F.P., 2013. Shared
representations for working memory and mental imagery in early visual cortex. Curr.
Biol. 23 (15), 1427-1431.

Andrews-Hanna, J.R., 2012. The brain's default network and its adaptive role in internal
mentation. Neuroscientist 18 (3), 251-270.

Anticevic, A., Cole, M.W., Murray, J.D., Corlett, P.R., Wang, X.J., Krystal, J.H., 2012. The
role of default network deactivation in cognition and disease. Trends Cognit. Sci. 16
(12), 584-592.

Barbey, A.K., Koenigs, M., Grafman, J., 2013. Dorsolateral prefrontal contributions to
human working memory. Cortex 49 (5), 1195-1205.

Benjamini, Y., Yekutieli, D., 2001. The control of the false discovery rate in multiple
testing under dependency. Ann. Stat. 1165-1188.

Bunge, S.A., Wendelken, C., Badre, D., Wagner, A.D., 2005. Analogical reasoning and
prefrontal cortex: evidence for separable retrieval and integration mechanisms.
Cerebr. Cortex 15 (3), 239-249.

Cardin, V., Friston, K.J., Zeki, S., 2011. Top-down modulations in the visual form pathway
revealed with dynamic causal modeling. Cerebr. Cortex 21 (3), 550-562.

Chapelle, O., Haffner, P., Vapnik, V.N., 1999. Support vector machines for histogram-
based image classification. IEEE Trans. Neural Network. 10 (5), 1055-1064.

Cho, S., Moody, T.D., Fernandino, L., Mumford, J.A., Poldrack, R.A., Cannon, T.D., et al.,
2010. Common and dissociable prefrontal loci associated with component
mechanisms of analogical reasoning. Cerebr. Cortex 20 (3), 524-533.

Christoff, K., Irving, Z.C., Fox, K.C., Spreng, R.N., Andrews-Hanna, J.R., 2016. Mind-
wandering as spontaneous thought: a dynamic framework. Nat. Rev. Neurosci. 17
(11), 718-731.

Chuderski, A., Taraday, M., Necka, E., Smolen, T., 2012. Storage capacity explains fluid
intelligence but executive control does not. Intelligence 40 (3), 278-295.

Craddock, R.C., James, G.A., Holtzheimer, P.E., Hu, X.P., Mayberg, H.S., 2012. A whole
brain fMRI atlas generated via spatially constrained spectral clustering. Hum. Brain
Mapp. 33 (8), 1914-1928.

Cumming, G.S., 2016. Heterarchies: reconciling networks and hierarchies. Trends Ecol.
Evol. 31 (8), 622-632.

de la Vega, A., Chang, L.J., Banich, M.T., Wager, T.D., Yarkoni, T., 2016. Large-scale
meta-analysis of human medial frontal cortex reveals tripartite functional
organization. J. Neurosci. 36 (24), 6553-6562.

Deary, 1.J., 2001. Human intelligence differences: towards a combined
experimental-differential approach. Trends Cognit. Sci. 5 (4), 164-170.

DeYoe, E.A., Carman, G.J., Bandettini, P., Glickman, S., Wieser, J., Cox, R., et al., 1996.
Mapping striate and extrastriate visual areas in human cerebral cortex. Proc. Natl.
Acad. Sci. Unit. States Am. 93 (6), 2382-2386.

Geake, J.G., Hansen, P.C., 2010. Functional neural correlates of fluid and crystallized
analogizing. Neuroimage 49 (4), 3489-3497.

Gentner, D., Smith, L., 2012. Analogical reasoning. Encyclopedia of Human Behavior
130-136.

Goulden, N., Khusnulina, A., Davis, N.J., Bracewell, R.M., Bokde, A.L., McNulty, J.P.,
Mullins, P.G., 2014. The salience network is responsible for switching between the
default mode network and the central executive network: replication from DCM.
Neuroimage 99, 180-190.

Halford, G.S., Wilson, W.H., Phillips, S., 1998. Processing capacity defined by relational
complexity: implications for comparative, developmental, and cognitive psychology.
Behav. Brain Sci. 21 (06), 803-831.

Hammer, R., Sloutsky, V., 2016. Visual category learning results in rapid changes in brain
activation reflecting sensitivity to the category relation between perceived objects
and to decision correctness. J. Cognit. Neurosci. 28 (11), 1804-1819.

Hammer, R., Brechmann, A., Ohl, F., Weinshall, D., Hochstein, S., 2010. Differential
category learning processes: the neural basis of comparison-based learning and
induction. Neuroimage 52 (2), 699-709.

Hammer, R., Cooke, G.E., Stein, M.A., Booth, J.R., 2015b. Functional neuroimaging of
visuospatial working memory tasks enables accurate detection of attention deficit
and hyperactivity disorder. Neuroimage: Clinic 9, 244-252.

Hammer, R., Diesendruck, G., Weinshall, D., Hochstein, S., 2009. The development of
category learning strategies: what makes the difference? Cognition 112 (1), 105-119.

Hammer, R., Tennekoon, M., Cooke, G.E., Gayda, J., Stein, M.A., Booth, J.R., 2015a.
Feedback associated with expectation for larger-reward improves visuospatial
working memory performances in children with ADHD. Developmental Cognitive
Neuroscience 14, 38-49.

Harrison, S.A., Tong, F., 2009. Decoding reveals the contents of visual working memory in
early visual areas. Nature 458 (7238), 632-635.

Haufe, S., Meinecke, F., Gorgen, K., Dahne, S., Haynes, J.D., Blankertz, B., BieBmann, F.,
2014. On the interpretation of weight vectors of linear models in multivariate
neuroimaging. Neuroimage 87, 96-110.

Hobeika, L., Diard-Detoeuf, C., Garcin, B., Levy, R., Volle, E., 2016. General and
specialized brain correlates for analogical reasoning: a meta-analysis of functional
imaging studies. Hum. Brain Mapp. 37 (5), 1953-1969.


https://doi.org/10.1016/j.neuroimage.2018.09.011
https://doi.org/10.1016/j.neuroimage.2018.09.011
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref1
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref1
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref1
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref1
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref2
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref2
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref2
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref2
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref3
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref3
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref3
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref4
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref4
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref4
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref4
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref5
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref5
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref5
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref6
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref6
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref6
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref8
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref8
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref8
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref8
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref9
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref9
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref9
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref10
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref10
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref10
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref11
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref11
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref11
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref11
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref12
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref12
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref12
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref12
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref13
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref13
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref13
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref13
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref14
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref14
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref14
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref14
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref15
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref15
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref15
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref16
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref16
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref16
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref16
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref17
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref17
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref17
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref17
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref18
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref18
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref18
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref18
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref19
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref19
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref19
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref20
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref20
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref20
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref21
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref21
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref21
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref21
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref21
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref23
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref23
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref23
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref23
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref24
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref24
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref24
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref24
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref25
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref25
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref25
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref25
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref26
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref26
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref26
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref26
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref27
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref27
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref27
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref28
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref28
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref28
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref28
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref28
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref29
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref29
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref29
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref30
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref30
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref30
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref30
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref30
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref30
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref31
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref31
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref31
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref31

R. Hammer et al.

Holyoak, K.J., 2012. Analogy and relational reasoning. The Oxford Handbook of Thinking
and Reasoning 234-259.

Hummel, J.E., Holyoak, K.J., 1997. Distributed representations of structure: a theory of
analogical access and mapping. Psychol. Rev. 104 (3), 427.

Krawczyk, D.C., Holyoak, K.J., Hummel, J.E., 2004. Structural constraints and object
similarity in analogical mapping and inference. Think. Reas. 10 (1), 85-104.

Kyllonen, P.C., Christal, R.E., 1990. Reasoning ability is (little more than) working-
memory capacity?! Intelligence 14 (4), 389-433.

Lanckriet, G.R., De Bie, T., Cristianini, N., Jordan, M.I., Noble, W.S., 2004. A statistical
framework for genomic data fusion. Bioinformatics 20 (16), 2626-2635.

Macaluso, E., Frith, C.D., Driver, J., 2000. Modulation of human visual cortex by
crossmodal spatial attention. Science 289 (5482), 1206-1208.

Mazaika, P., Hoeft, F., Glover, G.H., Reiss, A.L., June, 2009. Methods and Software for
FMRI Analysis for Clinical Subjects. Organization for Human Brain Mapping (OHBM),
San-Francisco, California.

McCulloch, W.S., 1945. A heterarchy of values determined by the topology of nervous
nets. Bull. Math. Biol. 7 (2), 89-93.

Medaglia, J.D., Lynall, M.E., Bassett, D.S., 2015. Cognitive network neuroscience.

J. Cognit. Neurosci. 27 (8), 1471-1491.

Menon, V., Uddin, L.Q., 2010. Saliency, switching, attention and control: a network
model of insula function. Brain Struct. Funct. 214 (5-6), 655-667.

Nee, D.E., Brown, J.W., Askren, M.K., Berman, M.G., Demiralp, E., Krawitz, A., Jonides, J.,
2013. A meta-analysis of executive components of working memory. Cerebr. Cortex
23 (2), 264-282.

Newman, A.J., Supalla, T., Hauser, P., Newport, E.L., Bavelier, D., 2010. Dissociating
neural subsystems for grammar by contrasting word order and inflection. Proc. Natl.
Acad. Sci. Unit. States Am. 107 (16), 7539-7544.

Nikolaidis, A., Baniqued, P.L., Kranz, M.B., Scavuzzo, C.J., Barbey, A.K., Kramer, AF.,
Larsen, R.J., 2016. Multivariate associations of fluid intelligence and NAA. Cerebr.
Cortex bhw070.

Pinel, P., Lalanne, C., Bourgeron, T., Fauchereau, F., Poupon, C., Artiges, E., et al., 2014.
Genetic and environmental influences on the visual word form and fusiform face
areas. Cerebr. Cortex bhu048.

Platt, M.L., Huettel, S.A., 2008. Risky business: the neuroeconomics of decision making
under uncertainty. Nat. Neurosci. 11 (4), 398-403.

1004

Neurolmage 184 (2019) 993-1004

Preusse, F., Van Der Meer, E., Deshpande, G., Krueger, F., Wartenburger, 1., 2011. Fluid
intelligence allows flexible recruitment of the parieto-frontal network in analogical
reasoning. Front. Hum. Neurosci. 5, 22.

Qureshi, M.N.I., Oh, J., Min, B., Jo, H.J., Lee, B., 2017. Multi-modal, multi-measure, and
multi-class discrimination of ADHD with hierarchical feature extraction and extreme
learning machine using structural and functional brain MRI. Front. Hum. Neurosci. 11.

Rakotomamonjy, A., Bach, F.R., Canu, S., Grandvalet, Y., 2008. Simple-mkl. J. Mach.
Learn. Res. 9, 2491-2521.

Shomstein, S., Yantis, S., 2006. Parietal cortex mediates voluntary control of spatial and
nonspatial auditory attention. J. Neurosci. 26 (2), 435-439.

Sternberg, R.J., 1977. Component processes in analogical reasoning. Psychol. Rev. 84 (4),
353.

Tuia, D., Camps-Valls, G., Matasci, G., Kanevski, M., 2010. Learning relevant image
features with multiple-kernel classification. IEEE Trans. Geosci. Rem. Sens. 48 (10),
3780-3791.

Uddin, L.Q., Clare Kelly, A.M., Biswal, B.B., Xavier Castellanos, F., Milham, M.P., 2009.
Functional connectivity of default mode network components: correlation,
anticorrelation, and causality. Hum. Brain Mapp. 30 (2), 625-637.

Unsworth, N., Fukuda, K., Awh, E., Vogel, EK., 2014. Working memory and fluid
intelligence: capacity, attention control, and secondary memory retrieval. Cognit.
Psychol. 71, 1-26.

Urbanski, M., Bréchemier, M.L., Garcin, B., Bendetowicz, D., de Schotten, M.T.,

Foulon, C., et al., 2016. Reasoning by analogy requires the left frontal pole: lesion-
deficit mapping and clinical implications. Brain 139 (6), 1783-1799.

Vendetti, M.S., Johnson, E.L., Lemos, C.J., Bunge, S.A., 2015. Hemispheric differences in
relational reasoning: novel insights based on an old technique. Front. Hum. Neurosci.
9.

Wainer, J., Cawley, G., 2017. Empirical evaluation of resampling procedures for
optimizing SVM hyperparameters. J. Mach. Learn. Res. 18 (15), 1-35.

Watson, C.E., Chatterjee, A., 2012. A bilateral frontoparietal network underlies
visuospatial analogical reasoning. Neuroimage 59 (3), 2831-2838.

Xu, M., Wang, T., Chen, S., Fox, P.T., Tan, L.H., 2015. Effective connectivity of brain
regions related to visual word recognition: an fMRI study of Chinese reading. Hum.
Brain Mapp. 36 (7), 2580-2591.

Xu, Z., Jin, R., Yang, H., King, 1., Lyu, M.R., 2010. Simple and efficient multiple kernel
learning by group lasso. In: Proceedings of the 27th International Conference on
Machine Learning (ICML-10), pp. 1175-1182.


http://refhub.elsevier.com/S1053-8119(18)30795-X/sref32
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref32
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref32
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref33
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref33
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref34
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref34
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref34
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref35
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref35
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref35
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref36
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref36
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref36
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref38
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref38
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref38
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref39
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref39
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref39
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref40
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref40
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref40
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref41
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref41
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref41
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref42
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref42
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref42
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref42
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref43
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref43
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref43
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref43
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref44
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref44
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref44
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref44
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref45
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref45
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref45
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref46
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref46
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref46
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref47
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref47
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref47
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref48
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref48
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref48
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref49
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref49
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref49
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref50
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref50
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref50
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref52
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref52
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref52
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref53
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref53
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref55
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref55
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref55
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref55
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref56
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref56
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref56
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref56
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref57
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref57
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref57
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref57
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref58
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref58
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref58
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref58
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref58
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref59
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref59
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref59
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref60
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref60
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref60
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref61
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref61
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref61
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref63
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref63
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref63
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref63
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref64
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref64
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref64
http://refhub.elsevier.com/S1053-8119(18)30795-X/sref64

	Individual differences in analogical reasoning revealed by multivariate task-based functional brain imaging
	1. Introduction
	2. Materials and methods
	2.1. Participants
	2.2. The People Pieces Analogy (PPA) task
	2.3. Data analysis tools
	2.4. MRI and fMRI data acquisition
	2.5. Image preprocessing
	2.6. fMRI modeling and image rescaling
	2.7. MRI/fMRI image quality control and head movements tolerance
	2.8. Simple multiple kernel learning (MKL) regression and classification machines
	2.9. Multidimensional scaling (MDS) and k-means clustering

	3. Results
	3.1. Behavioral performance
	3.2. Brain-behavior High-RC Simple-MKL regression model
	3.3. Brain-behavior Low-RC Simple-MKL regression model
	3.4. High-RC versus Low-RC Simple-MKL classification model
	3.5. Networks of co-activated brain parcels

	4. Discussion
	4.1. AR and dorsomedial/ventrolateral prefrontal (central executive) activation
	4.2. AR and occipito-parietal (visuospatial network) activation
	4.3. AR and ventromedial (default network) activation
	4.4. AR and insular (‘salience network’) activation
	4.5. Summary and conclusions

	Authors contribution
	Acknowledgments
	Appendix A. Supplementary data
	References


