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A B S T R A C T

Although cognitive neuroscience has made remarkable progress in understanding the neural foundations of goal-directed behavior and decision making, neuroscience
research on decision making competence, the capacity to resist biases in human judgment and decision making, remain to be established. Here, we investigated the
cognitive and neural mechanisms of decision making competence in 283 healthy young adults. We administered the Adult Decision Making Competence battery to
assess the respondent's capacity to resist standard biases in decision making, including: (1) resistance to framing, (2) recognizing social norms, (3) over/under
confidence, (4) applying decision rules, (5) consistency in risk perception, and (6) resistance to sunk costs. Decision making competence was assessed in relation to
core facets of intelligence, including measures of crystallized intelligence (Shipley Vocabulary), fluid intelligence (Figure Series), and logical reasoning (LSAT).
Structural equation modeling was applied to examine the relationship(s) between each cognitive domain, followed by an investigation of their association with in-
dividual differences in cortical thickness, cortical surface area, and cortical gray matter volume as measured by high-resolution structural MRI. The results suggest that:
(i) decision making competence is associated with cognitive operations for logical reasoning, and (ii) these convergent processes are associated with individual
differences within cortical regions that are widely implicated in cognitive control (left dACC) and social decision making (right superior temporal sulcus; STS). Our
findings motivate an integrative framework for understanding the neural mechanisms of decision making competence, suggesting that individual differences in the
cortical surface area of left dACC and right STS are associated with the capacity to overcome decision biases and exhibit competence in decision making.
1. Introduction

Cognitive neuroscience has made significant progress in under-
standing the neural mechanisms that enable adaptive behavior and de-
cision making (for a review, see (Heilbronner and Hayden, 2016)). For
example, considerable research demonstrates that the dorsal anterior
cingulate cortex (dACC) supports cognitive operations for monitoring,
controlling, and evaluating choice behavior. Early evidence from
event-related potential (ERP) studies demonstrated that the dACC gen-
erates an error monitoring signal, supporting its role in the detection and
monitoring of conflict (Falkenstein, 1990). Later research established a
broader perspective, providing evidence that the dACC generates control
(Johnston et al., 2007) and economic (Wallis and Rich, 2011) signals for
which error monitoring represents a special case. From this perspective,
the detection of conflict initiates control signals in the dACC to facilitate
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adaptive behavior and decision making (Botvinick et al., 2001). In the
context of economic decision making, signals in the dACC facilitate the
evaluation and comparison of rewards (Wallis and Rich, 2011). Re-
searchers have increasingly advocated for a comprehensive theory of
dACC function, replacing the concept of conflict monitoring with a
broader capacity for representing the expected value of control (Shenhav
et al., 2013). According to this framework, the dACC integrates infor-
mation about the expected payoff from a controlled process, along with
the amount of control required to achieve the payoff and the associated
cognitive effort or cost. Thus, by monitoring control-relevant information
and estimating the expected value of control, the dACC is believed to
guide the optimization of choice and the selection of new strategies for
adaptive behavior and decision making.

Accumulating evidence has broadened the scope of research investi-
gating the neural mechanisms of decision making to assess contributions
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from social and emotional information processing regions. Indeed, evi-
dence from the social cognitive neuroscience literature indicates that
decision making engages regions that are known to support social in-
formation processing, including the posterior superior temporal sulcus
(STS). This region is believed to support our ability to understand the
nature of social interactions (e.g., recognition of individual agents and
their actions, group membership, etc.) and to provide important infor-
mation about how to navigate the social world (e.g., informing whether
we should engage in cooperation versus competition). Evidence indicates
that this region selectively responds when viewing social interactions
between two agents (Isik et al., 2017) and is known to support moral
judgment and decision making, particularly in the context of emotionally
engaging moral dilemmas (Green et al., 2001, 2002; Moll et al., 2002).

Although an extensive neuroscience literature examines the neural
mechanisms of decision making, applications to the study of human
judgment and decision making using measures from the psychological
literature remain to be investigated. A wealth of psychological evidence
demonstrates that human judgment and decision making reflects the
operation of heuristics that reduce the complexity of the problem and, as
a consequence, introduce systematic biases in decision making (for a
review see (Gilovich et al., 2002). Thus, accurate decision making often
depends on the capacity to monitor intuitive, heuristic processes and to
deploy cognitive control mechanisms that override the intuitive response
in favor of reasoning from critical thought and evaluation. This capacity
for cognitive control provides the foundation for competence in decision
making, reflecting mechanisms for the adaptive regulation and control of
highly-accessible, intuitive responses that promote biases in decision
making.

Indeed, decades of research in the human judgment and decision
making literature have established core competencies of decision mak-
ing, which are captured by the Adult Decision Making Competence
Battery (A-DMC (Bruine de Bruin et al., 2007)). The A-DMC is a
well-validated test of decision making competence, whose measures
demonstrate internal consistency, high test-retest reliability, and are
predictive of real-world decisionmaking, including economic, social, and
medical choices (Bruine de Bruin et al., 2007). The A-DMC examines
three essential competencies of decision making, including: (i) compre-
hension, the capacity to assess the likelihood and value of possible actions
and their consequences; (ii) integration, the ability to combine available
information to make an adaptive choice; and (iii) meta-cognitive aware-
ness, the capacity to use analysis and deliberation to evaluate intuitive
responses, mental operations, and overt behaviors in decision making. A
comprehensive assessment of the respondent's capacity to demonstrate
these key facets of decision making is provided by an overall decision
making competence score, which represents the capacity to overcome
well-established decision biases and to demonstrate competence in de-
cision making.

Research investigating the neural foundations of goal-directed
behavior and the complementary psychological literature on the essen-
tial role of cognitive control mechanisms in decision making competence
together motivate the present study, which aims to integrate research
across these largely independent disciplines by elucidating the neural
mechanisms of decision making competence. The present exploratory
study therefore aimed to investigate whether performance on the A-DMC
is associated with individual differences in cortical thickness, cortical
surface area, and cortical gray matter volume as measured by high-
resolution structural MRI in a large sample of 282 healthy young adults.

Surface-Based Morphometric (SBM) methodology was used to
compute the structural MRI features. Cortical thickness is related to the
number of cells within a given column, cortical surface area is related to
the degree of folding, while cortical gray matter volume combines both
indices (Chklovskii et al., 2004; la Fougere et al., 2011; Thompson et al.,
2007). Previous research explored the association between individual
differences in structural MRI indices and high-level cognitive functions
(e.g., intelligence, Basten et al., 2015; perception, Duncan and Boynton,
2003, memory, Van Petten, 2004; attention, Valera et al., 2007;
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meta-cognition, Buchy et al., 2015; see Kanai and Rees, 2011). However,
the contributions of structural MRI features to the decision making
literature remain to be investigated. We therefore conducted a
whole-brain, exploratory analysis that examined multiple structural MRI
measures (i.e., cortical thickness, cortical surface area, and cortical gray
matter volume) in an effort to assess whether performance on the A-DMC
was associated with regions that have been widely implicated in the
neuroscience literature on decision making (e.g., dACC).

In addition, we sought to characterize the relationship between de-
cision making competence and multiple measures of intelligence,
applying structural equation modeling (SEM) to assess associations with
performance on tests of crystallized intelligence (Shipley Vocabulary),
fluid intelligence (Figure Series), and logical reasoning (LSAT). To
further isolate the neural mechanisms associated with decision making
competence – beyond closely related processes for fluid cognition – we
examined the unique contributions of cortical regions to decision making
competence while controlling for performance on tests of fluid intelli-
gence. Finally, we examined the specific cognitive operations underlying
the observed A-DMC sensitive regions with respect to the six subtests of
the A-DMC, providing SEM evidence to further elucidate the neural ar-
chitecture of specific facets of decision making competence.

2. Methods

2.1. Participants

The experimental protocol was approved by the University of Illinois
Institutional Review Board (IRB). Study participants were recruited from
the Urbana-Champaign, Illinois community and provided informed
written consent in accordance with the University of Illinois IRB. Study
eligibility required participants to: (a) be 18–44 years of age; (b) have at
least a high school diploma; (c) speak English fluently; (d) have normal or
corrected-to-normal vision and hearing; (e) not have current or recent
medications affecting the central nervous system; (f) not have a history of
psychological, neurological, or endocrine disease; (g) not have had a
concussion within the past two years; (h) not have learning disorders; (i)
to not smoke more than 10 cigarettes per day; (j) to have a body mass
index under 35; and (k) to have at least one positive response on the
revised Physical Activity Readiness Questionnaire (Thomas et al., 1992).

The present study examines participants (n¼ 300) for whom com-
plete structural MRI (T1-weighted sequence) and cognitive data (A-DMC,
Shipley Vocabulary, Figure Series, and LSAT) were acquired. Seventeen
participants failed to pass quality control performed after processing the
T1-weighted images with the CIVET pipeline, and consequently, were
removed from the final analysis. Therefore, the present study is
comprised of 283 participants (147 females, mean age¼ 23.32,
SD¼ 5.07). The highest education level achieved in this sample reflected
the following distribution: High school graduate (n¼ 26, 9.2%); Some
college (n¼ 146, 51.6%); College graduate (n¼ 50, 17.7%); Some post-
graduate (n¼ 26, 9.2%) and Master's degree or higher (n¼ 35, 12.4%).

2.2. Psychological assessment

A comprehensive battery of cognitive tests was administered in the
present study, including measures of decision making competence,
crystallized intelligence, fluid intelligence, and logical reasoning. We
review the administered battery of tests in further detail below.

2.3. Adult decision-making competence (A-DMC)

We administered a well-validated battery of measures to investigate
six facets of decision making, employing the Adult Decision Making
Competence test (Bruine de Bruin et al., 2007). As we review below, a
confirmatory factor analysis (CFA) was performed to obtain a decision
making competence index based on the six subtests of the A-DMC. A
description of each subtest is presented below.
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Resistance to framing. Resistance to framing measures the extent to
which a positive or negative framing of a problem can influence the
evaluation of an outcome. Problems are either of a risky-choice or
attribute type. Each participant saw pairs of questions that differed only
in the positive or negative framing. For instance, suppose 1200 endan-
gered animals are threatened by a pesticide. The positive frame requires a
choice between saving 600 animals for sure OR a 75% chance that 800
animals will be saved and a 25% chance that 0 animals will be saved. The
negative frame is identical, except saving/saved becomes losing/lost.

Recognizing social norms. Recognizing social norms measures howwell
a participant assesses social norms. There are two parts to each question.
First, the respondent chooses from a binary response option for what they
believe is socially acceptable. For instance, ‘Do you think it is sometimes
okay to steal under certain circumstances?‘. The second part asks, 'Out of
100 age similar peers, how many would also find that behavior accept-
able?' The responses from all participants are aggregated from the first
part of each question, providing an estimate of the percentage of re-
spondents from the entire sample who endorsed the behavior.

Over/Under confidence.Over/under confidence measures the extent to
which a participant recognizes the limits of their knowledge. A respon-
dent first provides a true or false response to a question. Then the
respondent is asked to quantify their confidence in their true or false
response by rating that answer on a scale from 50% (just guessing) to
100% (absolutely sure).

Applying decision rules.Applying decision rules asks respondents to use
different types of decision rules: elimination by aspects, satisficing,
lexicographic, or equal weights. Each question has a set of consumer
priorities and a set of product options under consideration by the
decision-maker. Respondents select one answer from a set of multiple
choice options.

Consistency in risk perception. Consistency in risk perception measures
how well a participant adheres to probability rules. The participant
scores the likelihood of an event happening to them on a scale between
0% (no chance) and 100% (certain). There are three dimensions
manipulated to evaluate the respondent's ability in assessing probability:
time, complementariness and relational status (in set theoretic terms).
For the time dimension, events are judged on their likelihood of
happening in the next year or within five years. The one and five-year
judgments by the participant are two separate items; but the pair is
scored for the test as correct if the event happening in one year has a
probability less than or equal to the event happening in five years. A
complementary event is defined as one minus the probability of the event
happening. For this dimension, there are two parts to each question, such
as the probability of getting into an accident while driving and the
probability of being accident free, and the probabilities assigned must
sum to 1. The final dimension also contains two parts, a subset and
superset event. If the superset event is the probability of death from any
cause, then one possible subset event is the probability of death from a
terrorist attack. Since the latter is a subset of the former, the latter must
have a probability no larger than the former. If a respondent provides a
response consistent with these set theoretic rules, then the item is scored
as correct for this subtest.

Resistance to sunk costs. Resistance to sunk costs measures how well a
participant ignores prior losses of time, money or other resources when
deciding to continue investing in the sunk cost option. Responses are on a
6-point scale, where a ‘1’ response means the participant prefers the
sunk-cost option whereas the ‘6’ response means the participant prefers
the normatively correct option, which reflects the ability to ignore past
loses and focus only on present consequences.

2.4. Crystallized intelligence

The vocabulary subscale of the Shipley-2 battery provided a well-
validated indicator of crystallized intelligence (Kaya et al., 2012). The
participant's task is to choose the word with the closest meaning to the
presented target word. This test is comprised of 40 items and the scale
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was administered with a time limit of 10min. The total number of correct
answers is the final measure for this test.

2.5. Fluid intelligence

The Figure Series task represents a canonical measure of fluid intel-
ligence. The participant is presented a sequence of figures and their task
is to detect a rule governing each series and to choose the correct item
that completes the series (Cattell and Horn, 1978). This task is comprised
of 30 items in total with a time limit of 60 s per item. Performance is
measured based on the total number of items answered correctly within
30min.

2.6. Logical reasoning

To investigate logical reasoning skills, the logical reasoning subscale
of Law School Admission Test (LSAT) was administered. The participant
is presented a short verbal passage and is asked to answer a question
about it. Questions are designed to evaluate a broad range of abilities
involved in critical thinking, such as evaluating the assumptions and
weight of the evidence underlying an argument. Five answer options are
presented for each question and the participant's task is to use reasoning
skills to select the best answer. Performance is measured according to the
total number of items answered correctly within a 35min time limit. The
test is comprised of 25 items in total. Performance on the LSAT plays a
central role in admittance to law school and represents a well-established
measure of logical reasoning (Jackson, 1998).

2.7. MRI acquisition

The structural MRI protocol of the present study was implemented
using a Siemens Magnetom Trio 3T whole-body MRI. All high-resolution
T1-weighted brain images were acquired using a 3D Magnetization
Prepared Rapid Gradient Echo Imaging (MPRAGE) protocol with 192
contiguous axial slices, acquired in sagittal orientation, echo time
(TE)¼ 2.32ms, repetition time (TR)¼ 1900ms, field of view
(FOV)¼ 230mm, acquisition matrix 256mm� 256mm, slice thick-
ness¼ 0.90mm, and flip angle¼ 9�.

2.8. Surface-based morphometry

The CIVET analysis pipeline was applied to estimate several structural
MRI features: Cortical Thickness (CTh), Cortical Surface Area (CSA) and
Cortical Gray Matter Volume (CGMV) (Version 2.0; (Ad-Dab'bagh Y.,
2006). The following analysis steps were performed to derive these
indices: (1) linear registration (12-parameters) was employed to register
the original T1-MRI image to ICBM 125 template; (2) radio-frequency
and non-uniformities correction were applied to correct these images;
(3) a brain mask was computed and the T1-MRI image was divided into
masks differing by tissue type: white matter (WM), graymatter (GM), and
cerebrospinal fluid (CSF); (4) high-resolution hemispheric surfaces were
generated (163,842 vertices) and registered to a high-resolution tem-
plate; (5) The different structural MRI features were computed for each
vertex. CSA and CGMV were estimated by measuring the local variations
of area/volume contraction and expansion relative to the vertex distri-
bution on the surface template, while CTh was computed as the distance
(mm) between the original WM and GM surfaces transformed back to the
native space of the original MR images and interpolated onto the surface
template then; (6) Finally, following CIVET guidelines, all outcomes were
smoothed applying a 30-mm kernel (Chung et al., 2003) for CTh and
40-mm kernel for CSA and CGMV (Chung et al., 2001).

2.9. Statistical analysis

The following statistical analyses were performed to assess the
cognitive and neural architecture of decision making competence.
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2.10. Structural equation models

Structural Equation Modeling (SEM) was employed to explore the
associations between decision making competence, crystallized intelli-
gence, fluid intelligence, and logical reasoning. A confirmatory factor
analysis (CFA) was performed to obtain a decision making competence
latent factor based on the six subtests of the A-DMC. This latent factor
captured the shared variance in performance across all measures of the A-
DMC. Next, an SEM model was computed to study the association be-
tween the decision making competence latent factor and the other
cognitive measures: Crystallized intelligence (Shipley Vocabulary), fluid
intelligence (Figure Series) and logical reasoning (LSAT). The analyses
were computed in Mplus 7 (Hallquist and Wiley, 2018) using maximum
likelihood as the method of estimation. Model fit was evaluated using the
root mean square error of approximation (RMSEA), and the comparative
fit index (CFI). Values below 0.06 for RMSEA and close to 0.95 represent
good fit (Hu and Bentler, 1999).

2.11. Associations between structural MRI features and cognitive measures

The relationship between structural MRI features (cortical thickness,
cortical surface area, and cortical gray matter volume) and cognitive
measures (decision making competence, crystallized intelligence, fluid
intelligence, and logical reasoning) was explored at the vertex level. All
surface-based morphometry models were computed with SurfStat created
for MATLAB 7 (MathWorks, Inc.). SurfStat is a statistical toolbox created
by Dr. KeithWorsley at theMNI (http://www.math.mcgill.ca/keith/surfst
at/). These models were computed for each cognitive measure separately
and for each structural MRI features. In these models, age and sex were
included as covariates. Results were corrected for multiple comparisons by
applying Random Field Theory (RFT) with a threshold of 5% (p< 0.05).
The degree of spatial similarity between the outcomes for all cognitive
measures was quantified using the Dice Coefficient (DC (Barbey et al.,
2014; Bennett and Miller, 2010; Roman et al., 2014; Rombouts et al.,
1997); for each structural MRI feature. DC is the ratio of the intersection of
two sets to the union of the sets, and it has a range from 0 (no similarity) to
1 (perfect similarity). To compute DC, threshold maps were binarized (i.e.
where the value ‘1’ indicates a voxel with a significant p-value after RFT
correction) and masked to include only those voxels inside the standard-
ized brain volume. The formula s¼(2jV1\V2j)/(jV1jþjV2j) was employed
to compute the similarity between maps, where Vi is the binary map cor-
responding to the different cognitive measure (e.g., 1 ¼ adult decision
making competence, 2 ¼ fluid intelligence). Therefore, DC represents the
number of overlapping (or shared) superthreshold voxels, divided by the
average total superthreshold voxels of the images.

2.12. Investigating the unique variance in structural MRI measures
explained by decision making competence

To investigate the unique associations between decision making
competence and structuralMRI features, we computed amodel controlling
for intelligencemeasures (crystallized and fluid intelligence), age, and sex.
This model was also computed for logical reasoning (LSAT). In each case,
RFT (p< 0.05)was applied to correct formultiple comparisons. In addition
to these analyses, the unique associations of intelligence measures (crys-
tallized and fluid intelligence) after controlling for decision making were
examined. Finally, we examined the specific cognitive operations under-
lying the observed A-DMC sensitive regions with respect to the six subtests
of the A-DMC, providing SEM evidence to further elucidate the neural
architecture of specific facets of decision making competence.

3. Results

3.1. Structural equation modeling

The descriptive statistics and correlations between the administered
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tests were computed to examine the relationship between each of the
cognitive variables. Table 1 presents the mean, median, and standard
deviation for each subtest of the A-DMC, and for tests of crystalized in-
telligence, fluid intelligence, and logical reasoning. Overall, scores on
each subtest of the A-DMC were higher in this sample than in the sample
studied for the validation of the A-DMC (Bruine de Bruin et al., 2007). An
effect size measure (Cohen d) was computed to estimate the magnitude of
the differences between samples. The group difference was high for
resistance to framing (d¼ 0.87), recognizing social norms (d¼ 0.58), and
applying decision rules (d¼ 1.86).

Table 2 depicts the Pearson correlations between the components of
the decision making competence battery and each of the administered
cognitive tests. The A-DMC subtests were moderately correlated with one
other (range:0.05–0.35). All correlations were positive, although the
“over/under-confidence” subtest was not reliably associated with the
other subtests. The highest correlation was found between “applying
decision rules” and “consistency in risk perception” (r¼ 0.343, p< .001).
Overall, the profile of correlations observed here is similar to that re-
ported by Bruine de Bruin and colleagues (range: -.01–0.43 (Bruine de
Bruin et al., 2007);). Fisher's z transformation was employed to deter-
mine if the magnitude of each correlation was different between samples.
Non-significant results were found for most of the comparisons (ps> .05;
range: 0.064 - 0.968), with the exception of the correlation between
“under/over confidence” and “applying decision rules”, where a higher
correlation was found for the original sample (r ¼ .31 vs. r ¼ .06,
Z¼ 3.29, p ¼ .002). Among the administered tests of intelligence, the
logical reasoning test demonstrated the highest correlation with the
A-DMC subtests (range: 0.12–0.48), followed by crystallized intelligence
(ranging from 0.05 to 0.40), and fluid intelligence (ranging from 0.03 to
0.37). The A-DMC subtest, “applying decision rules”, demonstrated the
strongest association with tests of intelligence (r¼ 0.403, p< .001 and
r¼ 0.366, p< .001 for fluid and crystallized intelligence respectively)
and logical reasoning (r¼ 0.470, p< .001). Fisher's z transformation for
repeated measures (Meng et al., 1992) was computed to determine if the
magnitude of the correlation between fluid and crystallized intelligence
and logical reasoning with the A-DMC subtest measures administered
was of the same magnitude. A Fisher's z transformation value higher than
j1.96j reveals a statistically significant difference (p< .05). Specifically,
logical reasoning showed a higher correlation than fluid intelligence with
“consistency in risk perception” (0.351 vs. 0.223, Z¼ 2.10) and “resis-
tance to framing” (0.389 vs. 0.292, Z¼ 2.33). Moreover, logical
reasoning obtained higher correlations than crystallized intelligence in
several A-DMC subtests: “consistency in risk perception” (0.351 vs.
0.216, Z¼ 2.26), “resistance to sunk cost” (0.185 vs. 0.035, Z¼ 2.53) and
“applying decision rules” (0.470 vs. 0.366, Z¼ 1.97).

Second, we investigated whether the decision making competence
index (Bruine de Bruin et al., 2007) can be estimated through Confir-
matory Factor Analysis (CFA). Appendix 1 presents the one-factor
structure for the A-DMC battery, including the factor weight of each
component. The fit of the model was excellent (RMSEA< 0.001;
CFI¼ 1.000). At a descriptive level, these results were similar to the re-
sults of the exploratory factor analysis reported by Bruine de Bruin and
colleagues (Bruine de Bruin et al., 2007). The only exception was the
“over/under confidence” component, which exhibited a factor loading
lower than expected.

Third, we computed an SEM model to investigate the associations
between the decision making competence latent factor and each subtests
of the A-DMC and test of intelligence and reasoning. The results of this
model are illustrated in Fig. 1. The fit indices of the model were excellent
(RMSEA¼ 0.022 and CFI¼ 0.991). All intelligence measures demon-
strated positive factor loadings. The highest association between tests of
intelligence and reasoning was found for measures of logical reasoning
and crystallized intelligence test (r¼ 0.50, p< .001), followed by logical
reasoning and fluid intelligence (r¼ 0.35, p< .001). The measures of
crystallized and fluid intelligence were also positively correlated, but the
magnitude of the correlation was lower (r¼ 0.16, p¼ .006). Associations
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Table 1
Mean (M) and Standard Deviation (SD) of the components of the decision-making competence battery (A-DMC), crystallized intelligence (Gc), fluid intelligence (Gf) and
logical reasoning. LSAT¼ Law School Admission Test.

Potential range INSIGHT sample (N¼ 283) Original sample (N¼ 360) Differences samples

Observed range M SD Observed range M SD d

A-DMC Components
Resistance to Framing .00/5.00 2.50/5.00 4.18 0.43 1.00/4.92 3.72 0.61 0.87
Recognizing Social Norms �1.00/1.00 �0.41/0.88 0.47 0.22 �0.59/0.84 0.33 0.26 0.58
Under/Over confidence .00/1.00 0.69/1.00 0.92 0.06 0.50/1.00 0.91 0.08 0.14
Applying Decision Rules .00/1.00 0.33/1.00 0.82 0.16 0.00/1.00 0.44 0.24 1.86
Consistency in Risk Perception .00/1.00 0.40/1.00 0.74 0.11 0.20/1.00 0.70 0.16 0.29
Resistance to Sum Costs 1.00/6.00 2.00/6.00 4.31 0.71 1.00/6.00 4.40 0.77 �0.12
Intelligence Battery
Figure Series 0.00/30.00 3.00/30.00 18.90 4.81 – – – –
LSAT 0.00/25.00 1.00/25.00 12.63 4.07 – – – –
Vocabulary 0.00/40.00 20.00/40.00 32.16 3.61 – – – –

Note. All subtests of the decision-making competence battery are scored so that higher numbers reflect better performance.

Table 2
Pearson correlations (and p values) between components of decision-making battery and crystallized intelligence (Gc), fluid intelligence (Gf) and logical reasoning.
LSAT¼ Law School Admission Test.

2. 3. 4. 5. 6. 7. 8. 9.

1. Under/Over confidence .051
(.393)

.055 (.355) -.077 (.197) .058 (.328) .086 (.147) .124* (.037) .046 (.437) .121* (.042)

2. Consistency in Risk
Perception

1 .175**
(.003)

.197*
(.001)

.343***
(<.001)

.292***
(<.001)

.223***
(<.001)

.216***
(<.001)

.351***
(<.001)

3. Recognizing Social Norms 1 .139*
(.019)

.207***
(<.001)

.188** (.002) .249***
(<.001)

.131* (.027) .190** (.001)

4. Resistance to Sunk Costs 1 .197*** (.001) .104 (.081) .035 (.563) .215***
(<.001)

.185** (.002)

5. Applying Decision Rules 1 .291***
(<.001)

.366***
(<.001)

.403***
(<.001)

.470***
(<.001)

6. Resistance to Framing 1 .292***
(<.001)

.241***
(<.001)

.389** (<.001)

7. Gc (Vocabulary) 1 .165** (.005) .501***
(<.001)

8. Gf (Figure Series) 1 .350***
(<.001)

9. Logical reasoning (LSAT) 1

*p < .05; **p < .01; ***p < .001.

Fig. 1. Structural equation model of adult decision-making competence, intelligence measures, and logical reasoning. Broken lines depict non-significant weights.
Gc¼ crystallized intelligence; Gf¼ fluid intelligence; LSAT¼ Law School Admission Test.

F.J. Rom�an et al. NeuroImage 199 (2019) 172–183
between the latent decision making score and the other cognitive mea-
sures demonstrated that all correlation values were positive and of me-
dium or large magnitude. The highest correlation was observed between
decision making competence and logical reasoning (r¼ 0.71, p< .001),
while the associations with measures of crystallized and fluid intelligence
176
were moderate (r¼ 0.40 and r¼ 0.53 respectively) (ps< .001).

3.2. Associations between structural MRI features and cognitive measures

We applied SEM to investigate the association between cortical
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thickness, cortical surface area, and cortical gray matter volume and the
administered tests of decision making competence (A-DMC), crystallized
intelligence (Shipley Vocabulary), fluid intelligence (Figure Series), and
logical reasoning (LSAT). Age and sex were included as covariates in each
model. In addition, the Dice Coefficient (DC) was computed to investi-
gate the spatial similarity between the administered cognitive measures
for each of the structural MRI features.
3.3. Cortical thickness

We examined the statistically significant associations between
cortical thickness and each cognitive measure (see Appendix 2). All re-
sults were corrected for multiple comparisons using random field theory
(RFT). For the decision making measure, two clusters were found as
significant at bilateral middle temporal lobe (p corrected-left¼ 0.031; p
corrected-right¼ 0.012). Regarding fluid intelligence, several areas were
found as significant: right posterior cingulate cortex (p cor-
rected¼ 0.018) and left posterior cingulate cortex (p corrected¼ 0.031),
right posterior superior temporal sulcus (p corrected¼ 0.005), right
temporal pole (p corrected¼ 0.003), and left inferior temporal (p cor-
rected< 0.001). The significant results for crystallized intelligence were
located within the left superior temporal lobe (p corrected¼ 0.042).
Finally, significant results for logical reasoning were observed within the
bilateral middle temporal lobe (p corrected-left¼ 0.029; p corrected–
right¼ 0.041) and the right inferior temporal lobe (p corrected¼ 0.007).

In addition, spatial similarity among the observed cortical thickness
findings (see Appendix 2) for measures of decision making competence,
crystallized intelligence, fluid intelligence, and logical reasoning were
examined using the Dice Coefficient. The spatial similarity (DC) between
decision making competence and the intelligence measures was small for
fluid intelligence (DC¼ 0.26), null for crystallized intelligence, and of
moderate for logical reasoning (DC¼ 0.49). Note that the highest
Fig. 2. Cortical gray matter volume results for decision-making competence, crystal
values among measures are illustrated in black. Dice coefficients of the spatial similar
left hemisphere is on the reader's left. Maps are corrected for multiple comparisons
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correlation in the SEM model was also found between decision making
competence and logical reasoning (r¼ 0.71, p< .001). In addition, the
DC between fluid intelligence and logical reasoning was of medium size
(DC¼ 0.15). However, at the behavioral level, logical reasoning was
more strongly related to crystallized intelligence than fluid intelligence
(r¼ 0.50 and r¼ 0.35 respectively) (ps< .001).

3.4. Cortical surface area

The results for cortical surface area were weaker than for the cortical
thickness measures (see Appendix 3). Specifically, the results for decision
making competence were found in left dACC (p corrected¼ 0.044) and
left fusiform area (p corrected¼ 0.046). The associations between
cortical surface area and logical reasoning were observed within left
dACC (p corrected¼ 0.022). Spatial overlap was observed only between
decision making competence and logical reasoning (DC¼ 0.55), given
that no significant associations were found after RFT correction for
crystallized and fluid intelligence.

3.5. Cortical gray matter volume

With respect to cortical gray matter volume (see Fig. 2), decision
making competence engaged a broadly distributed network of regions,
including left orbitofrontal cortex (p corrected¼ 0.014), left fusiform (p
corrected¼ 0.014), right posterior superior temporal sulcus (STS) (p
corrected¼ 0.008), and right occipital lobe (p corrected¼ 0.025). No
significant associations were found for crystallized intelligence, while the
associations for fluid intelligence were observed within the left fusiform
(p corrected¼ 0.045) and right occipital cortex (p corrected¼ 0.048).
Finally, the results for logical reasoning were located within left dACC (p
corrected¼ 0.015), right posterior superior temporal sulcus (p cor-
rected¼ 0.010), and right parahippocampal gyrus (p corrected¼ 0.047).
lized intelligence (Gc), fluid intelligence (Gf), and logical reasoning. Correlation
ity among brain regions for each measure are illustrated in blue. In each map the
(p< .05).
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Again, the highest overlap was found between decision making compe-
tence and logical reasoning (DC¼ 0.23), while a small association was
observed for decision making competence and fluid intelligence
(DC¼ 0.17). The spatial similarity between fluid intelligence and logical
reasoning was null.
3.6. Investigating the unique variance in structural MRI measures
explained by decision making competence

To further isolate the neural substrates of decision making compe-
tence, we repeated the analyses including logical reasoning, fluid intel-
ligence, and crystallized intelligence as covariates in the model. Null
results were found when all other cognitive factors were included as
covariates. However, results for decision making competence and logical
reasoning were found in similar areas with a substantial degree of
overlap (DC range: 0.23–0.55). Therefore, we repeated the analyses
separately for decision making competence and logical reasoning. For
both measures, we controlled for performance on tests of intelligence
(fluid intelligence and crystallized intelligence). Results for cortical sur-
face area and cortical gray matter volume are shown in Fig. 3 (p< 0.05,
corrected for multiple comparisons). Cortical surface area within left
dACC (p corrected¼ 0.048) and right STS (p corrected¼ 0.047) and
cortical gray matter volume within right STS (p corrected¼ 0.044)
accounted for individual differences in decision making competence.
Furthermore, variability in cortical surface area within left dACC (p
corrected¼ 0.048) was associated with individual differences in logical
reasoning, but the outcomes were null for cortical gray matter volume.
With respect to cortical thickness, the results for decision making
competence and logical reasoning were null. The degree of overlap be-
tween the results found for decision making and logical reasoning was of
medium size for cortical surface (DC¼ 0.28) and null for cortical gray
matter volume (DC¼ 0.00).

In addition, we explored the unique associations of crystallized and
fluid intelligence after controlling for individual differences in decision
making competence (see Appendix 4). The unique associations of fluid
intelligence were located in the right precuneus (p corrected¼ 0.007) for
Fig. 3. Brain regions whose cortical gray matter volume is uniquely associated with
vidual differences in fluid intelligence, age and sex. Maps are corrected for multiple co
anterior cingulate cortex, STS¼ right posterior superior temporal sulcus.
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the cortical thickness index, while no significant results were found for
crystallized intelligence.

The final step in our analysis was to further probe the relationship
between the unique cortical surface area regions of decision making
competence with each component of the A-DMC battery for cortical
surface area and for cortical gray matter volume regions (Fig. 4). Since
the anatomical regions were selected based on the correlation previously
found for decision making competence, the results can be seen as
descriptive. The left dACC was associated with “applying decision rules”
(r¼ 0.120, p ¼ .043), and “resistance to framing” (r¼ 0.208, p< .001)
while the right posterior superior temporal sulcus (STS) was associated
with “consistency risk perception” (r¼ 0.208, p< .001), “recognizing
social norms” (r¼ 0.127, p ¼ .031), “applying decision rules” (r¼ 0.143,
p ¼ .015) and “resistance to framing” (r¼ 0.138, p ¼ .020).

4. Discussion

Although cognitive neuroscience has made remarkable progress in
understanding the neural foundations of goal-directed behavior and de-
cision making, neuroscience research on decision making competence, the
capacity to resist biases in human judgment and decision making, re-
mains to be established. Here, we investigated the cognitive and neural
mechanisms of decisionmaking competence in 283 healthy young adults.
We administered the Adult Decision Making Competence battery to
assess the respondent's capacity to resist standard biases in decision
making, including: (1) resistance to framing, (2) recognizing social
norms, (3) over/under confidence, (4) applying decision rules, (5) con-
sistency in risk perception, and (6) resistance to sunk costs. In addition,
the present study characterized the relationship between decision mak-
ing competence and multiple measures of intelligence, applying struc-
tural equation modeling (SEM) to assess associations with performance
on tests of crystallized intelligence (Shipley Vocabulary), fluid intelli-
gence (Figure Series), and logical reasoning (LSAT). To further isolate the
neural mechanisms of decision making competence, we examined the
unique contributions of cortical regions to decision making competence
while controlling for performance on intelligence test (fluid and
decision-making competence, and logical reasoning after controlling for indi-
mparisons (p< .05). DC¼Dice coefficient. L¼ left and R¼ right. dACC¼ dorsal



Fig. 4. Correlations between unique cortical surface area regions with each subtest of decision-making competence. Broken lines depict non-significant correlations.
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crystallized measures). Finally, we examined the specific cognitive op-
erations underlying the observed A-DMC sensitive regions with respect to
the six subtests of the A-DMC, providing SEM evidence to further eluci-
date the neural architecture of specific facets of decision making
competence. Our findings support the following primary conclusions.

4.1. Investigating the relationship between decision making competence
and facets of intelligence

The reported SEM analysis demonstrated a strong relationship be-
tween decision making competence and performance on tests of logical
reasoning (LSAT); r¼ 0.71; Fig. 1). This finding provides evidence that
decision making competence engages cognitive operations for critical
thought and deliberation – for example, when evaluating the assump-
tions and weight of the evidence underlying an argument. Thus, the ca-
pacity to overcome decision biases and to demonstrate competence in
decision making is associated with performance on standardized tests of
logical reasoning (i.e., LSAT).

Reliable associations were also observed between decision making
competence and measures of crystallized and fluid intelligence (r¼ 0.53
and 0.54, respectively; Fig. 1). The observed pattern of correlations
provides evidence that the capacity to resist biases in decision making
depends on cognitive processes for both crystallized and fluid intelli-
gence. Indeed, research indicates that prior knowledge and experience
(crystallized intelligence), along with the capacity for adaptive reasoning
and problem solving (fluid intelligence), support the generation and
evaluation of hypotheses in decision making (for a review see (Gilovich
et al., 2002)) and therefore corroborate the results of the present study.

Further examination of specific A-DMC subtests revealed correlations
of low to moderate value (ranging from 0.03 to 0.29), with the exception
of the “applying decision rules” subtest, which exhibited higher corre-
lations (logical reasoning: r¼ 0.47; crystallized intelligence: 0.37; fluid
intelligence: 0.40). This pattern of findings reflects a common reliance on
mechanisms for the detection and use of decision rules for goal-directed,
intelligent behavior (Bennett et al., 1990; Payne et al., 1993; Raven et al.,
1998). Our findings support the idea that decision making, reasoning,
and intelligence are related cognitive abilities, but the small effect sizes
indicate that these domains also rely upon distinct mechanisms. Thus,
decision making competence demonstrates variability that cannot be
fully explained by performance on tests of intelligence and reasoning –

variability that can be further explored by investigating the neural
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mechanisms underlying each cognitive domain (Bruine de Bruin et al.,
2007).

The strong positive correlation among performance on tests of deci-
sion making competence and logical reasoning was accompanied by a
high degree of spatial similarity, reflecting individual differences in
cortical surface area primarily within left dACC (DC¼ 0.28). Prior
neuroscience research demonstrates that the dACC plays a central role in
adaptive behavior and decision making, providing evidence that this
region is critical for cognitive control and the optimization of choice
behavior (for a review, see (Heilbronner and Hayden, 2016)). The find-
ings of the present study further establish the role of the dACC in decision
making competence, demonstrating that individual differences in the
cortical surface area of this region is associated with cognitive control
and the capacity to overcome biases in human judgment and decision
making.

The association between these structural indices and intelligence
measures were weaker than the results found for decision-making. The
associations between structural brain indices and Gc were null, with the
exception of cortical thickness where the outcomes were located in the
superior temporal pole. Similarly, Colom et al. (2009) found a
non-overlapping cluster of Gc in the superior temporal pole after
removing the effects of general and visuospatial intelligence. Regarding
fluid intelligence, the associations between cortical thickness and Gf
were distributed across several brain areas, as in previous studies (Kar-
ama et al., 2011; Joshi et al., 2011). However, the associations between
Gf and cortical surface area were null. The number of studies addressing
the relationship between intelligence and cortical surface area are
smaller than for cortical thickness (e.g., Fleischman et al., 2014; Rom�an
et al., 2014). Some studies found stronger associations between surface
area and intelligence than between the latter and thickness (e.g., Vuok-
simaa et al., 2015).

4.2. Unique Characteristics of decision making competence and facets of
intelligence

Accumulating evidence indicates that decision making competence
reflects individual differences in critical thought and self-reflection, skills
that enable the respondent to identify and resist biases in decision
making (Evans and Stanovich, 2013). These skills are not directly
assessed by neuropsychological tests of intelligence, which are instead
designed to examine core cognitive abilities, such as working memory
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capacity (Colom et al., 2013). This distinction motivates contemporary
theories of intelligence, which propose two primary systems of thought –
one that captures individual differences in rational thinking dispositions
(e.g., critical thinking skills) and another that reflects individual differ-
ences in core cognitive abilities (e.g., performance on tests of working
memory (Evans and Stanovich, 2013). The present study further supports
this distinction, providing evidence that critical thinking skills, as
assessed by decision making competence, and measures of intelligence
depend on separable but related cognitive processes. Indeed, reliable
correlations between decision making competence and crystallized and
fluid intelligence were observed (r¼ 0.53 and 0.54, respectively; Fig. 1),
but with significant variance in decision making that remained to be
explained.

We further examined the unique structural brain imaging correlates
of decision making competence when controlling for performance on
related tests of fluid intelligence. The results revealed individual differ-
ences in cortical surface area within left dACC. Thus, the associations
between decision making competence and cortical gray matter volume
previously observed within orbitofrontal, occipital, and fusiform regions
disappeared after controlling for intelligence measures (fluid and crys-
tallized intelligence). These results support the idea of cortical surface
area as a structural MRI index stronger associated with higher-order
cognition process (e.g., intelligence) than cortical thickness (Colom
et al., 2013; Fleischman et al., 2014; Rom�an et al., 2014; Vuoksimaa
et al., 2015). Cortical gray matter volume combines cortical thickness
and cortical surface area, and, therefore, the results found for volume are
not independent.

This pattern of findings further supports the behavioral results indi-
cating that decision making competence and fluid intelligence depend on
separable but related processes, demonstrating both shared (e.g., orbi-
tofrontal cortex) and distinct (e.g., dACC) cortical regions in each
domain. The unique reliance upon dACC for decisionmaking competence
further suggests that mechanisms for critical thought and logical
reasoning are not reliably engaged by neuropsychological tests of fluid
intelligence, supporting the contemporary view that intelligence tests are
instead designed to measure core facets of cognitive ability (e.g., working
memory capacity) (Evans and Stanovich, 2013).

We also investigated the contribution of these regions in each A-DMC
subtest, examining the structural brain imaging correlates of specific
facets of decision making competence. Individual differences in cortical
surface area within left dACC was associated with performance on mul-
tiple A-DMC subtests, including “applying decision rules”, “resistance to
sunk cost”, and “resistance to framing.” These tasks are known to recruit
mechanisms for cognitive control, engaging critical thinking skills that
enable the respondent to apply decision rules to reason logically about
the problem and to resist biases due to the framing of the problem or a
tendency to focus on prior investments despite future losses (for a review
see (Gilovich et al., 2002)).

An analysis of individual differences in cortical gray matter volume
revealed reliable effects within right posterior STS for multiple A-DMC
subtests, including “consistency in risk perception”, “recognizing social
norms”, “resistance to sunk costs”, “applying decision rules”, and
“resistance to framing”. The right posterior STS is known to play a central
role in processing the intentions underlying actions, the context in which
actions occur, and is particularly sensitive to the outcome of goal-
directed actions (Shultz et al., 2011). Thus, the engagement of this re-
gion in multiple facets of decision making competence reflects the
importance of processes for representing intentions (e.g., “recognizing
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social norms”), contexts (e.g., “consistency in risk perception”), and
outcomes in decision making (e.g., “applying decision rules”).

4.3. Decision making competence and logical reasoning

The reported SEM analysis demonstrated that decision making
competence was highly correlated with performance on tests of logical
reasoning (r¼ 0.71), supporting the role of critical thought and
reasoning skills in decision making. Furthermore, the highest associa-
tions were found for the “applying decision rules” (r¼ 0.47), “resistance
to framing” (r¼ 0.39) and “consistency in risk perception” subtests
(r¼ 0.35), all of which represent core facets of decision making compe-
tence that rely upon skills for logical reasoning.

A similar pattern of results was observed for structural neuroimaging
measures of decision making competence and logical reasoning. A sig-
nificant degree of spatial similarity was observed for decision making
competence and logical reasoning across multiple structural brain im-
aging measures (DC¼ 0.49, 0.55 and 0.23 for cortical thickness, cortical
surface area, and cortical gray matter volume, respectively). Moreover,
we investigated the unique variance in logical reasoning after removing
the variance explained by fluid intelligence, using the same approach
applied to study the unique variance accounted for by decision making
competence. In each case, a similar pattern of findings was observed,
engaging regions primarily within left dACC. The degree of spatial sim-
ilarity was 28% for cortical surface area. Therefore, the observed pattern
of associations indicate that decision making competence and logical
reasoning engage similar cognitive and neural mechanisms. Indeed, the
logical reasoning measure of the LSAT is designed to examine critical
thought and reasoning (e.g., evaluating the assumptions and weight of
the evidence underlying an argument), skills that also play a central role
in resisting biases and exhibiting competence in decision making.

5. Conclusions

The present study provides novel evidence that: (i) decision making
competence is associated with cognitive operations for logical reasoning,
and that (ii) these convergent processes are associated with individual
differences in cortical surface area primarily within left dACC and
cortical gray matter volume within right posterior STS. Our findings
motivate an integrative framework for understanding the neural mech-
anisms of decision making competence, suggesting that individual dif-
ferences in the cortical surface area within left dACC and right STS are
associated with the capacity to overcome decision biases and exhibit
competence in decision making.
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Appendix 1. Confirmatory factor analysis of the decision-making competence. Broken lines depict non-significant weights.
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Appendix 2. Cortical thickness results for decision-making competence, crystallized intelligence (Gc), fluid intelligence (Gf), and logical
reasoning. Correlation values among measures are illustrated in black. Dice coefficients of the spatial similarity among brain regions for
each measure are illustrated in blue. In each map the left hemisphere is on the reader's left.

Appendix 3. Cortical surface area results for decision-making competence, crystallized intelligence (Gc), fluid intelligence (Gf), and
logical reasoning. Correlation values among measures are illustrated in black. Dice coefficients of the spatial similarity among brain
regions for each measure are illustrated in blue. In each map the left hemisphere is on the reader's left.
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Appendix 4. Brain regions whose cortical thickness is uniquely associated with fluid intelligence after controlling for individual
differences in decision-making, age and sex. Maps are corrected for multiple comparisons (p< .05). R¼ right.
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