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ARTICLE INFO ABSTRACT

Background: Fluid intelligence (Gy) is a critical cognitive ability that is predictive of real-world outcomes, and it
has been a persistent aim to characterize its neural architecture.

Procedure: We advance our prior research by applying latent class analysis to evaluate individual differences in
the neural and cognitive foundations of G¢ over the course of a 16-week randomized, multi-modal intervention
trial in neurologically healthy, younger adults (N = 424).

Results: Controlling for pre-intervention ability, three latent classes described individual performance at post-
intervention and one group (n = 71) showed greater gains in visuospatial reasoning and high performance at
post-intervention. The high performance group was predicted by larger anterior cingulate cortex, caudate and
hippocampus volumes, and smaller middle frontal, insula and parahippocampal cortex volumes.

Conclusion: Regions that support cognitive control, working memory, and relational processes differentiated
individuals who had higher G ability at pre-intervention and demonstrated a cumulative better response to the
intervention.
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demonstrates dynamic changes throughout the lifespan, whereas crys-
talized intelligence continues to develop into middle age and remains
stable until the ninth decade [9]. Interventions have aimed to bolster G¢

1. Introduction

General intelligence predicts performance for a wealth of real-world

outcomes across the lifespan—scholastic achievement [1,2], job per-
formance [3,4], and career success [5]—and thus, it is an appealing
target for interventions aimed to promote cognitive function and brain
health. General intelligence reflects two primary facets of intellectual
ability [6]: (i) crystallized intelligence, which supports problem solving in
familiar contexts that rely upon prior knowledge and experience, and
(ii) fluid intelligence (Gg), which enables problem solving in novel en-
vironments that require flexible, adaptive behavior [7,8]. G¢

with mixed results [10-13]. Recently, we reported a large-scale multi-
modal intervention that demonstrated modest gains in visuospatial
reasoning within a group that engaged in equal parts cognitive training
and exercise as compared to an active control [14]. We observed a large
degree of individual differences not only at pre-intervention, but also in
the magnitude of change in Gy test performance over the course of the
intervention. Accumulating evidence further suggests that individual
differences in brain structure and function account for variability in G¢
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[15,16] and may therefore predict responsiveness to intervention. The
present study sought to investigate this hypothesis, examining in-
dividual differences in the neurobiological foundations of fluid in-
telligence and their contributions to performance in a 16-week rando-
mized, multi-modal intervention trial.

Cognitive tests of Gy measure individual differences in adaptive
reasoning and problem solving skills, which reflect a broad set of
abilities, including cognitive control, working memory, reasoning, and
decision making [17]. Given the ontology of Gy, it is perhaps not sur-
prising that an equally broad list of neural substrates have been iden-
tified. These brain regions can be conceptualized as falling into two
categories: those that are putative substrates of fluid intelligence and
those that belong to systems that enable it, including mechanisms for
attention, learning, and memory.

For example, regions within the frontal and parietal cortices are
known to play a central role in G¢ [18-24]. The prefrontal cortex sup-
ports reasoning and decision making functions [16,18,19,25,26] and
was among the first neural correlates identified [27]. However, pre-
frontal cortical function is not specific to Gg for example, the middle
frontal and orbitofrontal gyri are known to support working memory
function [28,29]. Working memory functions are critical to G
[18,19,30,31] and are a common target for interventions aimed to
promote fluid intelligence. Working memory engages several brain re-
gions, including the orbitofrontal cortex, caudate nucleus, cerebellum,
insula cortex and prefrontal cortex [32] and it is plausible that factors
that promote better function of these regions may bolster Gy.

A second system implicated in Gy is cognitive control [18,19].
Cognitive control is closely related to working memory function and
response inhibition [33-35], which mediate its effects on G¢ [36]. In-
deed, cognitive control is a putative mechanism of training effects on Gy
[37]. The anterior cingulate cortex is a canonical correlate of cognitive
control and is commonly engaged in functional neuroimaging studies of
G¢ [21,38]. Cognitive control is vulnerable to stress and positivity bias,
which has been attributed to its functional connection with the amyg-
dala [39,40]. Although the amygdala has not been directly implicated
in Gy, it mediates responses to stress and situational factors that are
known to impair test performance [41-44]. Mindfulness techniques
improve cognitive control [45] and mitigate effects of situational stress
[42,43], and mindfulness interventions have been shown to improve
test performance [41-44,46]. Thus, the anterior cingulate cortex and
amygdala that support directed attention and mediate effects of stress
may indirectly contribute to Gy.

Finally, a network of regions that are best described by their con-
tribution to declarative or relational memory have been identified as
correlates of G¢ across the lifespan. Fluid reasoning is enabled by the
capacity to flexibly adapt prior knowledge and experience to novel
contexts. These core skills — adaptive learning and memory — are pri-
mary functions of medial temporal lobe regions [47], and although
these regions are not commonly reported in studies specifically of Gy,
there is accumulating evidence to support this notion. Larger hippo-
campal volume is associated with higher G¢ in adults [48] and long-
itudinal shrinkage correlates with declines in G¢ in adult aging [49,50].
The hippocampus, and the adjacent parahippocampal cortex, are cri-
tical for spatial cognition and visuospatial reasoning [51,52] that are
typical targets of Gy assessments. The hippocampal internal circuitry
and connectivity with the parahippocampal cortex are essential for
pattern detection and comparisons in memory [53-55]. The ability to
compare current information to past experience is necessary for adap-
tive reasoning and problem solving, and may be facilitated by the
functional connection between the hippocampus and prefrontal cortex
[47,56,57].

In summary, neural mechanisms for cognitive control, working
memory, and relational processing have been identified to support Gy.
However, few studies have considered the broad collection of brain
regions simultaneously to evaluate their relative contributions to the
neural architecture of G;. Therefore, it is unclear what neural substrates
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may be most relevant to individual differences in Gy ability and, further,
may be targets to promote cognitive function.

We address this issue in the current study and take a novel approach
to evaluate individual differences in G¢ over the course of a 16-week,
multi-modal randomized controlled trial (RCT) via exploratory latent
class analysis. The multi-modal intervention included aerobic exercise
(Fit), combined exercise and cognitive training (Fit-MF), a third con-
dition that further added mindfulness meditation (Fit-MF-Mind), and an
active control that engaged in visual search tasks. In our prior report,
we describe minimal differences between the active control condition
and the three intervention groups, but noted profound individual dif-
ferences in post-intervention performance on tests of G that were not
explained by intervention assignment or pre-intervention ability [14].
Further, we noted in that report that even the individuals in the active
control condition showed repeated-testing gains and high post-inter-
vention performance on novel tests of Gy. Taken together, we speculated
that all intervention activities, including the active control condition,
may have engaged Gy function and that a follow-up study considering
neural correlates of G¢ as another source of individual differences was
warranted.

In this manner, we aim to identify a possible subgroup of individuals
who collectively demonstrate performance gains over the course of the
intervention, as well as high performance on novel tests of G¢ that were
only administered at post-intervention. We further aim to identify
neural correlates that best differentiate individuals who show greater
gains following intervention, and possible differences between inter-
vention groups. In this pursuit, we chose a set of regions a priori that,
based upon the reviewed literature, are known correlates of cognitive
control (anterior cingulate cortex, ACC; amygdala, Amy; middle frontal
cortex, MFC), working memory (orbitofrontal cortex, OFC; caudate
nucleus, Cd; cerebellum gray matter, Cb; insula cortex, Ins), and rela-
tional processing (hippocampus, Hc; posterior parahippocampal gyrus,
PhG). We hypothesize that, when the sample is considered as a whole, a
latent class of individuals who demonstrate gains and high Gy at post-
intervention will be identified apart from a class of individuals who do
not show gains and demonstrate low Gy at post-intervention. Second, we
hypothesize that volumes of the prefrontal and parietal cortical regions
will be the strongest predictors of individuals who show greater post-
intervention gains in Gy, followed by regions that are correlated with
cognitive control, working memory, and relational processing.

2. Material and methods
2.1. Participants

The study sample included 424 adults (age M = 23.35, SD = 4.84;
46% female; 50% Caucasian), who scored within the normal range on
Shipley vocabulary (M = 110.63, SD = 9.21). The sample was recruited
as part of a multi-modal intervention study that is described in our prior
report [14] and here, in brief. Participants were recruited from the
Champaign-Urbana, IL metro region. To be eligible for the study, par-
ticipants were age 18-44 years; had at least a high school education;
spoke English fluently; had normal or corrected-to-normal vision and
hearing; no current or recent medications affecting the central nervous
system or present a risk during aerobic exercise; no history of psycho-
logical, neurological, or endocrine disease, no concussion within the
past two years, and no learning disorders; did not smoke more than 10
cigarettes per day; did not have a body mass index greater than 35; and
responded negatively to all items on the physical activity readiness
questionnaire revised [58]. Participants were randomly assigned to four
groups that engaged in different intervention activities: aerobic exercise
(Fit); aerobic exercise and cognitive training (Fit-MF); aerobic exercise,
cognitive training and mindfulness training (Fit-MF-Mind); and an ac-
tive control condition (Control). Refer to our prior report for a complete
description of intervention activities and analysis of group differences
[14]; this report considers individual differences in G¢ independent of
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A. Enrollmentand Screening
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Fig. 1. Enrollment and attrition of the eligible sample in analyses. Participants were recruited and screened based on enrolment criteria. Based upon subject
eligibility, responsiveness, and scheduling availability, 424 persons were enrolled and randomly assigned to one of four experimental conditions. A subset of
individuals were chosen at random to undergo MRI at pre-intervention (n = 282). Intent-to-treat analyses included all eligible participants.

the intervention group assignments. All participants provided written
informed consent in compliance with the university Institutional Re-
view Board.

There were two sources of missing data. First, by study design, a
subset of the eligible sample (N = 282; 67%) was selected at random to
undergo MRI at pre-intervention. Second, of the eligible sample, 234
individuals returned for testing after the 16-week intervention (Fig. 1;
n = 150 with complete data and MRI). In total, approximately 27% of
data were missing at random (Little's x2 (30, N = 424) = 38.40,
p = 0.14). The sample of individuals who had MRI were similar to those
who did not in age (t (422) = —0.26, p = 0.80) and performance on
Shipley vocabulary (t (422) = 1.72, p = 0.09), Figure Series (t
(422) = 0.97, p = 0.97) and LSAT (t (422) = 1.88, p = 0.06) at pre-
intervention, and were equivalently sampled across intervention con-
ditions ()(2 (3) = 0.13, p = 0.99). More women than men were missing
an MRI scan (xz (1) = 6.34, p = 0.01). The proportion of attrition was
similar across intervention groups (x2 (8) = 2.21, p = 0.53) and was
unrelated to demographic variables (all p = 0.07); individuals who
returned performed similar to those who did not on Figure Series (t
(422) =0.09, p=0.93) and LSAT at pre-intervention (t
(422) = —0.50, p = 0.62). Based upon this analysis, missing data were
handled via full information maximum likelihood (FIML) estimation,
which leverages all available information in the covariance matrix to
estimate latent effects without imputation [59,60]. The method is ro-
bust under the assumption of data missing at random [59,60], and in-
clusion of covariates of the missing data pattern (e.g., sex) in the model
satisfies this assumption [61]. Use of all available data improves the
validity of the model estimates and handling missing data via FIML is
the current recommended practice for longitudinal studies [59].
Therefore, all analyses were completed with the total eligible sample of
424 participants.

2.2. Assessment of fluid intelligence

Fluid intelligence was assessed via standardized tests that were
adapted to be administered on a computer with an online interface for
data recording. Based on an independent sample, all tests had high
internal consistency (Cronbach's a > 0.80) and were administered with
a time limit determined from response times in the 75th percentile, thus
response speed was not considered as a confound to the assessment of
Gy. Tests are reported in detail in our prior publication [14] and briefly,
here.

2.2.1. Repeated measures: LSAT and figure series

Two tests of Gy were administered at pre- and post-intervention. The
analytical reasoning subtest of the LSAT is a standardized achievement
test used to determine admittance into law school and evaluates logical
reasoning [62]. Figure Series is a canonical measure of G¢ in which
participants must choose the correct item missing in a series by dedu-
cing the rule governing the series [63]. For both tests, parallel forms
were created and administered in a counterbalanced order at pre- and
post-intervention. Total correct responses during the time limit on each
test were included as indicators of G¢.

2.2.2. Post-intervention G¢

Four additional tests of G were administered only at post-inter-
vention: Letter Series, Number Series, Matrix Reasoning, and Shipley
Abstraction. Letter Series presents a string of letters to participants, who
are required to choose the missing letter in the sequence [64]. In the
Number Series Task, participants are presented a series of numbers and
their task is to choose the missing number that completes the sequence
[65]. The Matrix Reasoning Task also examined pattern completion, but
within the context of abstract symbols presented in a matrix [63]. Fi-
nally, in the Shipley Abstraction Task, participants are presented a
series of letters, numbers, or words, and their task is to choose the
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missing item that completes the sequence [66]. Tests were scored ac-
cording to standard administration procedures.

2.2.3. MRI protocol and regional brain volumetry

MRI data were acquired with a Siemens Magnetom 3 T Trio scanner
using a 32-channel head coil located in Beckman Institute Biomedical
Imaging Center at the University of Illinois. A 3D high-resolution T1-
weighted magnetization prepared gradient-echo (MPRAGE) sequence
was collected with the following parameters: 0.9 mm? isotropic voxel;
repetition time = 1900 ms; inversion time = 900 ms; echo
time = 2.32 ms, with GRAPPA and an acceleration factor of 2.

Cortical reconstruction and volumetric segmentation was completed
with the Freesurfer (v 6.0) image analysis suite, which is available for
download online (http://surfer.nmr.mgh.harvard.edu/; last accessed
09/26/2018). Details of the procedures and software are described in
prior publications [67-75]. Briefly, images were submitted to motion
correction [74], removal of non-brain tissue using a hybrid watershed/
surface deformation procedure [76], automated Talairach transforma-
tion, and segmentation of subcortical white matter and deep gray
matter regions (including the hippocampus, amygdala and caudate
nucleus) [69,71]. This was followed by tessellation of the gray-white
matter boundary, automated topology correction [69,76], and surface
deformation following intensity gradients to optimize boundary deli-
neation between gray and white matter and cerebrospinal fluid
[67,68,77], and regional parcellation of the cerebral cortex [72,78].

The automated procedure was evaluated by two trained raters for
accurate gray-white matter separation, and was manually corrected
with a procedure that was confirmed to be reliable: intra-class corre-
lation coefficient (ICC(2); [79]) of at least 0.85. Subcortical gray matter
segmentation was reviewed for complete parcellation and were not
manually corrected. All regional brain volumes were corrected for in-
dividual intracranial volume via regression [80].

2.3. Statistical analysis

All analyses were completed in a structural equation modeling fra-
mework. Primary hypothesis testing was completed in a latent class
analysis that we used here to identify subgroups of individuals who
demonstrated above sample average Gy and greater responsiveness in
the course of the intervention. The model construction for hypothesis
testing was executed in two steps. In Step 1, two separate structural
equation models were fit in order to estimate latent factor scores for
performance on Gy tests and regional brain volumes. In Step 2, two
separate latent class models were estimated to test hypotheses pre-
dicting performance subgroups at pre- and post-intervention.

2.3.1. Step 1: components of model construction

The model of G¢ test performance was the same we reported in detail
in our previous paper, and included appropriate model constraints for
measurement invariance in repeated testing and between intervention
groups [14] (Fig. 2, Step 1A). Figure Series and LSAT were administered
at pre- and post-intervention, and these were used to identify latent
constructs representing performance on each test at pre-intervention
and latent change in performance. In addition, the four G¢ measures
that were only administered at post-intervention were used to identify a
post-intervention fluid intelligence construct. All measures were con-
verted to z-scores with the total sample average, and therefore negative
values indicate below sample average performance and positive values
indicate above sample average performance. Latent scores of pre-in-
tervention Figure Series and LSAT, change in each test, and post-in-
tervention G¢ were extracted for further analysis in this report.

Also in Step 1, a second model of pre-intervention regional brain
volumes was estimated (Fig. 2, Step 1B). Each region construct was
identified by left and right volume measures, each with fixed loadings
of 1 and freely-estimated measurement variance. This construction is
conceptually similar to sum total volume but with the independent
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estimation of measurement error. The model included age, sex and
Shipley vocabulary performance as covariates of regional brain vo-
lumes. In this model construction, missing values were handled via full
information maximum likelihood estimation [59,60]. Latent factor
scores of regional brain volumes were extracted for further analysis.

2.3.2. Step 2: hypothesis testing with latent class analysis

The hypotheses were tested in Step 2, which included estimating the
number of latent classes that described performance subgroups at pre-
(Fig. 2, Step 2A) and post-intervention (Step 2B), and predicting
membership of the subgroups by regional brain volumes. The number
of optimal classes was determined by relative change in model fit as-
sessed with Akaike information criterion (AIC) and sample-size ad-
justed Bayesian information criterion (BIC), for which lower values
indicated better fit [81]. As well as the Vuong-Lo-Mendell-Rubin like-
lihood ratio test (VLMR) that compares change in the null hypothesis
log-likelihood value between models of different numbers of classes,
and statistical significance indicates that the additional class explains
significantly more variability in the sample. This procedure was re-
peated in a step-wise manner until the optimal number of classes was
determined.

Latent factor scores of regional brain volumes, age, and sex were
included as covariates to predict latent class membership, as was in-
tervention group. Brain region volumes were allowed to correlate,
which provided an estimation of unique effects on latent class mem-
bership while accounting for repeated measurements. In model 2B of
post-intervention performance, latent scores for pre-intervention Figure
Series and LSAT were included as covariates [14] via regression, and
therefore latent class membership was determined by individual
variability in change in performance on repeated testing and on the
novel tests at post-intervention, independent of pre-intervention Gg¢
ability. Further, intervention group as a moderator of regional brain
volume predicting performance subgroup was tested by including in-
teraction terms, which if not significant were removed from the model.
Significant prediction of latent class membership was evaluated at p <
0.05, and the unstandardized regression coefficients (b) are reported
with the odds ratio and its 95% confidence intervals (OR 95% CI),
which if not overlapping with 1.0 suggest differentiation between
performance subgroups. In secondary analysis, planned comparisons
between each intervention group and the active control condition were
tested in predicting post-intervention performance subgroup member-
ship, with Bonferroni correction of significance testing (a’ = 0.02).

3. Results
3.1. Identification of latent classes in performance at pre-intervention

In examining individual differences in pre-intervention performance
on Figure Series and LSAT, two classes of individuals were identified.
The model of two latent classes (AIC = 1591.13, BIC = 1597.27) fit
significantly better than assuming a homogeneous sample
(VLMR = 11.52, p = 0.004), and there was no evidence in support of
three classes (AIC = 1566.12, BIC = 1574.89; VLMR = 122.51,
p = 0.61). Class 1 identified 259 individuals (61%) and was defined by
below sample average performance on Figure Series (latent
mean = —0.30, p <0.001) and LSAT (latent mean = —0.31,
p < 0.001). Class 2 identified 165 individuals (39%), defined by above
sample average performance on Figure Series (latent mean = 0.42,
p < 0.001) and LSAT (latent mean = 0.45, p < 0.001). Based upon this
observed pattern, we refer to Class 1 as “Lower Pre-Intervention G¢” and
Class 2 as “Higher Pre-Intervention G¢”, but we note that all participants
were of normal intelligence.

3.1.1. Neural correlates of fluid intelligence performance groups at pre-
intervention
Volumes of several brain regions were included as covariates to
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Step 1B
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Fig. 2. An illustration of the structural equation modelling analysis. The analysis was completed in two steps. In step 1, two separate models (A and B) were estimated
in order to extract latent factor scores to be used in the latent class analysis in step 2. The model depicted in Step 1A was published in our prior report [14]. The model
in Step 1B was estimated to create latent estimates of regional brain volumes, and not illustrated, all brain region constructs were allowed to correlate. The latent
factor scores that were estimated in Step 1A and 1B were extracted and used in the latent class analysis in Step 2. In the latent class model in Step 2, all covariates
were allowed to correlate (illustrated with double-headed, curved arrow) and performance subgroups were predicted at pre-intervention (Step 2A) and at post-

intervention (Step 2B).

predict latent class membership. As expected, the volumes of the brain
regions were inter-correlated, ranging r = 0.64, p < 0.001 (ACC cor-
related with OFC) to r = 0.04, p = 0.63 (Ins correlated with PhG).
Although not all regional volumes were significantly correlated with
another, the degree of commonality in part reflects repeated measures
taken of an individual, and we accounted for this by allowing the re-
gional measures to correlate while predicting latent class membership.

A number of brain regions significantly differentiated the Higher
Pre-Intervention Gy group from the lower Gy performance group
(Table 1). Notably, the pattern of results was mixed and in rank order,

Table 1
Correlates of latent fluid intelligence performance classes at pre-intervention.

Higher vs. Lower Pre-Intervention G¢

Correlate b p-value OR OR 95% CI
Age 0.03 0.569 1.03 0.94/1.12
Sex (male) 3.48 0.001 32.33 6.12/170.72
Group —-0.01 0.949 0.99 0.69/1.40
ACC 3.30 < 0.001 27.11 6.25/117.69
MFC -0.23 < 0.001 0.80 0.73/0.88
OFC —0.26 0.059 0.77 0.62/0.97
Ins -1.33 < 0.001 0.27 0.15/0.48
PhG —2.26 < 0.001 0.10 0.04/0.28
Cb 0.06 < 0.001 1.06 1.03/1.08
cd 1.09 < 0.001 2.97 1.74/5.06
Hc 1.52 < 0.001 4.58 2.39/8.76
Amy —-0.84 0.045 0.43 0.22/0.86

Note: Prediction of membership in the “Higher Pre-Intervention G¢” group (39%
of the sample) versus the “Lower Pre-Intervention G’ group (61% of the
sample)—e.g., positive b-weight values and OR > 1.00 indicate larger regional
brain volumes predict comparatively greater likelihood of classification into the
higher performance group. Significant coefficients are bolded (p < 0.05).
ACC—anterior cingulate cortex; MFC—middle frontal cortex;
OFC—orbitofrontal cortex; Ins—insula cortex; PhG—posterior para-
hippocampal gyrus; Cb—cerebellum gray matter; Cd—caudate nucleus;
Hc—hippocampus; Amy—amygdala.

larger ACC, Hc and Cd volumes were the strongest predictors, followed
by smaller PhG volume. Repeating the analysis in the sample with
complete data (n = 150) produced a similar pattern of results: 43% of
the sample was classified as Higher Pre-Intervention G;, which was
significantly predicted by all brain regions (all p < 0.03), except for
Amy (p = 0.22).

3.1.2. Equivalence of intervention groups prior to the intervention

In our prior report, we found that the randomly-assigned interven-
tion groups were equivalent in pre-intervention G performance [14]. In
the present analysis, intervention group assignment did not differ-
entiate between the Lower and Higher Pre-Intervention Gy groups
identified in the latent class analysis: b = —0.01, p = 0.95, OR = 0.99.

3.1.3. Identification of latent classes in performance at post-intervention

Higher pre-intervention performance on Figure Series (b = —0.42,
p < 0.001) and LSAT (b = —0.08, p < 0.001) predicted lesser repeated-
testing gains on each test, and both were associated with higher post-
intervention Gy scores (b = 0.53 and 0.40, p < 0.001, respectively).
Controlling for individual differences at pre-intervention, three classes
described variability in performance at post-intervention. The model of
three latent classes (AIC = 2396.52, BIC = 2415.80) fit significantly
better than two classes (VLMR = 41.05, p = 0.03), and there was no
evidence in support of four classes (AIC = 2293.98, BIC = 2318.52;
VLMR = 120.24, p = 0.39).

Class 1 identified 39 individuals (9%) and was defined by significant
declines in performance on repeated testing and below sample average
performance on novel G¢ measures at post-intervention (Table 2). Class
2 identified 314 individuals (74%), defined by significant gains in
Figure Series, but significant decline in LSAT and below sample average
performance on post-intervention Gy tests. Class 3 identified 71 in-
dividuals (17%) and was defined by significant gain in Figure Series
that was greater than in Class 2 (see 95% CI in Table 2), stable per-
formance on LSAT and above sample average performance on post-in-
tervention G tests. By this collection of assessments, Class 3 described a
group of individuals who showed the greatest gains following the
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Latent class identification by performance on fluid intelligence assessments over the course of the intervention.

Class 1 “Low Response”

Class 2 “Moderate Response”

Class 3 “High Response”

Measure Mean 95% CI p-value R? Mean 95% CI p-value R? Mean 95% CI p-value R?

A Figure Series —-0.74 —0.89/-0.59 < 0.001 0.55 0.40 0.38/0.43 < 0.001 0.52 1.15 1.03/1.26 < 0.001 0.56
A LSAT -0.17 —-0.23/-0.11 < 0.001 0.07 -0.07 —0.09/-0.05 < 0.001 0.05 0.03 —0.01/0.07 0.52 0.06
Post-Intervention G¢ —0.46 —0.50/-0.41 < 0.001 0.97 —-0.04 —0.06/-0.03 < 0.001 0.96 0.24 0.21/0.28 < 0.001 0.97

Note: Group means are reported with 95% confidence intervals, significance testing, and R? as the proportion of variance explained in each performance index per
group within the model that included correlates. Figure Series and LSAT tests were repeated at pre- and post-intervention, and post-intervention Gy reflected
performance on four novel tests that were not repeated. Performance on tests of Gy at pre- and post-intervention were normed to the sample average, and therefore
negative values indicate performance below the sample average. Positive change scores indicate repeated-testing gains, and negative scores, decline over the course
of the intervention. Pre-intervention performance was controlled as a covariate in the models. Based upon the observed pattern of individual differences in per-
formance, we termed Class 1 as “Low Intervention Response” (9% of the sample), Class 2 as “Moderate Intervention Response” (74% of the sample), and Class 3 as

“High Intervention Response” (17% of the sample).

intervention period and further analysis predicted classification of this
group. We refer to Class 3 as the “High Intervention Response”, Class 2
as the “Moderate Intervention Response” and Class 1 as the “Low In-
tervention Response” groups.

3.1.4. Neural correlates of fluid intelligence performance groups following
an intervention

A number of regions significantly differentiated the High
Intervention Response group from the Low Response group (Table 3). In
rank order, larger ACC (b = 1.47,p = 0.001), Cd (b = 0.78, p < 0.001),
and Hc (b=0.74, p<0.001), and smaller PhG (b= —1.22,
p=0.002), Ins (b= —0.74, p<0.001), and MFC (b= —0.12,
p = 0.006) volumes predicted greater likelihood of assignment to the
High Intervention Response group relative to the lowest performance
group. When differentiated from the remaining majority of the sample
that demonstrated moderate response to the intervention, only three
regions significantly predicted the High Intervention Response group:
smaller PhG (b = —0.50, p = 0.048) was the strongest predictor, fol-
lowed by larger Cd volume (b = 0.30, p = 0.018) and larger Cb volume
(b =0.02, p =0.038). Taken together, smaller PhG volume was a
consistently strong predictor of high intervention response apart from
either the Low (OR = 0.29, OR 95% CI: 0.15/0.57) or Moderate In-
tervention Response groups (OR = 0.61, OR 95% CI: 0.40/0.92), fol-
lowed by larger Cd volume (Table 2).

Repeating the analysis in the sample with complete data produced
similar results: 38% of the sample was classified as High Intervention
Response, followed by 55% Moderate Response and 7% Low Response.
Volumes of ACC (Low OR = 2.46, p = 0.48; Moderate OR = 1.40,
p=0.57), Cd (Low OR =1.83, p=0.03; Moderate OR = 1.18,

Table 3
Correlates of latent fluid intelligence performance classes at post-intervention.

p =0.43), PhG (Low OR = 0.87, p = 0.86; Moderate OR = 0.79,
p=0.63), Ins (Low OR =0.66, p=0.20; Moderate OR = 0.92,
p = 0.75), and Amy (Low OR = 0.78, p = 0.85; Moderate OR = 0.48,
p = 0.05) were the strongest predictors, although the significance
testing was likely less sensitive.

3.1.5. Intervention groups did not differ in classification of performance

The main effect of intervention group did not significantly differ-
entiate the High Intervention Response Group (vs. Low b = —0.07,
p = 0.74; vs. Moderate b = —0.02, p = 0.85) and it did not moderate
the relation between regional brain volume and performance classifi-
cation (all interaction terms p > 0.07). In secondary analysis, planned
comparisons against the active control condition further identified no
evidence of differential effects by intervention type: Fit (b = —0.33 and
—0.24, p's = 0.44vs. Low and Moderate, respectively), Fit-MF
(b =0.64 and 0.44, p's = 0.08, respectively), and Fit-MF-Mind
(b= —-0.07 and —0.12, p's = 0.67, respectively). Therefore, in-
dependent of prescribed intervention and pre-intervention ability, in-
dividuals with smaller PhG and larger Cd volumes were more likely to
show greater improvement in Gy test performance.

4. Discussion

Here we take a novel approach of studying individual differences in
the course of a RCT via latent class analysis to explore neural correlates
of Gr. In a large sample of neurologically healthy, younger adults we
observed three classes of individuals who showed low, moderate, and
high responses following the intervention. Those in the High
Intervention Response group demonstrated the largest repeated-testing

High Response vs. Low Response
Correlate b

High Response vs. Moderate Response

p-value OR OR 95% CI b p-value OR OR 95% CI
Age -0.13 0.054 0.88 0.79/0.98 0.02 0.688 1.02 0.94/1.11
Sex 1.48 0.030 4.40 1.43/13.50 —0.38 0.463 0.68 0.29/1.61
Group —-0.07 0.754 0.94 0.66/1.32 —0.02 0.851 0.98 0.79/1.21
ACC 1.47 0.001 4.33 2.09/9.00 0.40 0.256 1.49 0.84/2.64
MFC -0.12 0.006 0.89 0.83/0.96 —0.02 0.442 0.98 0.93/1.03
OFC -0.12 0.114 0.88 0.78/1.01 0.01 0.935 1.01 0.91/1.11
Ins -0.74 < 0.001 0.48 0.35/0.65 -0.25 0.063 0.78 0.63/0.97
PhG -1.22 0.002 0.29 0.15/0.57 -0.50 0.048 0.61 0.40/0.92
Cb 0.02 0.116 1.02 1.00/1.03 0.02 0.038 1.02 1.00/1.03
Cd 0.78 <0.001 2.18 1.61/2.94 0.30 0.018 1.36 1.10/1.67
Hc 0.74 < 0.001 2.10 1.52/2.92 0.29 0.078 1.33 1.02/1.73
Amy —-0.65 0.064 0.52 0.29/0.93 —0.42 0.101 0.66 0.43/1.00

Note: Based upon the observed performance that defined each class, we describe those who showed a high intervention response in contrast to the low and moderate
intervention response. All effects are calculated with regard to the high response group: e.g., positive b-weight values and OR > 1.00 indicate larger regional brain
volumes predict comparatively greater likelihood of classification into the high response group. Significant coefficients are bolded (p < 0.05). ACC—anterior
cingulate cortex; MFC—middle frontal cortex; OFC—orbitofrontal cortex; Ins—insula cortex; PhG—posterior parahippocampal gyrus; Cb—cerebellum gray matter;
Cd—caudate nucleus; Hc—hippocampus; Amy—amygdala.
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gains in visuospatial reasoning, stability (instead of decline) in analytic
reasoning performance, and above sample average performance on
novel tests of Gy administered at post-intervention. Test performance
indicated average intelligence in this sample, and therefore individual
differences that we have identified reflect natural variability that is
representative of the normal population. Volumes of several brain re-
gions predicted the subgroup with higher G¢ at pre-intervention and
distinguished individuals with high response to the intervention, in-
cluding regions implicated in cognitive control, working memory, and
relational processing.

Individuals at post-intervention fell within three performance sub-
groups, and one group (17%) demonstrated the highest response fol-
lowing the intervention—largest gains in visuospatial reasoning, re-
lative stability (opposed to decline) in analytical reasoning scores, and
above sample average performance on tests of G; that were only ad-
ministered at post-intervention (controlling for pre-intervention
ability). This group was distinct from the majority of the sample (74%)
who showed modest gains only in visuospatial reasoning and otherwise
poor performance, and a minority (9%) who experienced decline in
repeated-testing and below sample average performance at post-inter-
vention. The pattern of effects that include gains in performance on
Figure Series but stability, and even decline, on LSAT is consistent with
our prior report and we speculated that the psychometric properties of
repeated-testing differ between the two tests [14]. Further, the latent
class analysis accounted for a large proportion of variability in change
in Figure Series performance and in novel post-intervention tests, but a
small proportion of variance of change in LSAT performance. Following
our previous report of individual differences in performance that were
unexplained by intervention group [14], we hypothesized that there
may be a subgroup of individuals across prescribed interventions who
experienced differential improvement in G;. Here, we found evidence in
support of this hypothesis.

However, the type of multi-modal intervention activity—aerobic
exercise, cognitive training, mindfulness meditation, or visual search
and change detection (control)—did not differentiate between perfor-
mance subgroups. The observation of greater individual variability than
the magnitude of intervention group differences is in line with the
mixed results that are common in the cognitive training and interven-
tion literature [82]. This is further consistent with our previous report
of minimal intervention-related effects, in which the combined fitness-
cognitive training condition produced isolated repeated-testing gains in
visuospatial reasoning greater than the active control condition [14].
We had identified that individuals even in the active control condition
showed gains in performance following the intervention period, and
large variability within the condition that additionally incorporated
mindfulness meditation [14]. Each intervention activity was selected
for the possibility of directly (i.e., cognitive training) or indirectly (i.e.,
aerobic exercise and mindfulness meditation) acting upon the cognitive
and neural constituents of G¢. Moreover, the visual search task in the
active control condition may have promoted attention control and
processing speed [83] that later aided performance on timed tests of Gy.
Indeed, here we found no single intervention activity that increased the
likelihood of an individual belonging to the high performance subgroup
at post-intervention. Instead, individual differences in regional brain
volumes were the stronger predictor of performance at both pre- and
post-intervention.

Volumes of regions within prefrontal and insular cortices differ-
entiated between the lowest and highest intervention response sub-
groups. Specifically, smaller MFC and Ins predicted greater likelihood
of showing G¢ performance gains, opposed to deficits, following the
intervention period. Similarly, smaller volumes of these regions also
predicted higher pre-intervention G¢ (39% of the sample) as compared
to lower performance. These cortical regions follow a protracted de-
velopmental trajectory in which cortical thinning and shrinkage occur
throughout adolescence and into the second decade before entering a
period of stability [84], which is adaptive and supports normal
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cognitive development. As the study sample here was selected to be
younger (average age 23.35 years), smaller volumes of these cortical
regions predicting higher G function is in line with an expected de-
velopmental trajectory for adaptive cognitive function. In contrast, ACC
follows a different non-linear developmental trajectory and develops
earlier than the prefrontal cortex [84]. Therefore, it is plausible that
larger ACC volumes in young adulthood may be adaptive for better
cognitive control. In line with this, larger ACC volume predicted high G
intervention response. The identification of these cortical regions as
correlates of G¢ performance subgroups is consistent with the theories of
fluid intelligence engaging the fronto-parietal network [20] and many
reports from MRI and patient lesion studies [18-24]. However, we do
not find evidence of OFC volume significantly and uniquely differ-
entiating performance groups at either pre- or post-intervention. In a
longitudinal study of healthy aging, larger OFC volume predicted
higher fluid intelligence in adults [49], and it is plausible that this re-
gion is a stronger correlate of function in the context of neurodegen-
eration than in the healthy, young adult sample of the present study.

Prefrontal and parietal cortical regions are canonical correlates of
fluid cognitive ability and their connectivity with other brain regions
galvanizes the theory that other cognitive abilities buttress G, For ex-
ample, the functional connections between the prefrontal cortex and
hippocampus may provide information stored in relational memory to
be used in pattern detection, rule extraction and adaptive reasoning
[47]. Although neural correlates of relational memory are not typically
studied in the context of fluid intelligence, there is some initial evidence
in support of this notion. Hc volume correlates with individual differ-
ences in fluid intelligence among musicians [48], and shrinkage pre-
dicts age-related declines in general intelligence across the adult life-
span [49,50]. Here, we identified that larger Hc predicted greater
likelihood of classification to the high performing group at pre-inter-
vention and in differentiating the highest intervention response group
from the lowest. As participants were naive to the tasks by design, and
repeated tests employed parallel forms, the contribution of Hc cannot
be ascribed to recollection of the specific test per se. Instead, relational
memory function may have bolstered performance on tests of adaptive
reasoning and fluid ability, and individuals with larger Hc volumes may
have been better equipped to take advantage of this.

Neural correlates of fluid ability differentiated between perfor-
mance groups, yet the strongest predictors were regions implicated in
working memory and relational processes. Smaller PhG volume was
among the strongest predictors of pre-intervention performance group,
as well as in differentiating those who showed the greatest response
following intervention. The comparison between the extreme lowest
and highest performance groups is informative. Yet, most intriguing is
that PhG, Cd and Cb were the only brain regions examined that also
differentiated the highest response group from the remaining majority
of the sample, who demonstrated lesser but significant gains in vi-
suospatial reasoning, decline in analytical reasoning, and lower post-
intervention performance on novel tests. Therefore, contrary to our
hypothesis, neural correlates of relational processes and working
memory, which are associated with fluid ability, were the strongest
predictors of G¢ over the course of the intervention.

The close relationship between working memory and performance
on tests of Gy has been widely and thoroughly reported [18,19,30,31].
Cognitive control directly modifies working memory functions and
mediates the effect of working memory capacity on Gy test performance
[33-36]. The prefrontal-parietal network regions that were identified as
significant predictors of performance subgroup membership—middle
frontal, insula, and anterior cingulate cortices—are not specific to fluid
intelligence and reasoning functions, and are implicated in a broader
working memory network that includes the cerebellum and caudate
nucleus [85]. Further, considering the test content in the present study,
many of the assessments relied upon visuospatial cognitive ability and
this constituted the majority of variance explained in the latent per-
formance groups. Visuospatial cognitive ability correlates with
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parahippocampal cortical structure and function that integrates in-
formation and facilitates contextual judgment [51,86]. Relational pro-
cesses, in conjunction with working memory, are integral to Gy ability
[87,88]. Of the regions examined, PhG may have presented as a strong
performance predictor for its function, and for its integrative projec-
tions between the hippocampus, prefrontal and parietal cortical regions
in a network for information and experiences, integrated over time and
space [56,57,89]. Therefore, the evidence we report here is congruent
with a model of fluid intelligence that is dependent upon executive
functions [19] and buttressed by relational processes [47,87,88]. Two
of the three multi-modal intervention conditions included adaptive
cognitive training that targeted working memory functions [14]. The
reported evidence suggests that individuals who possessed a more de-
veloped and robust neural architecture may have been better equipped
to benefit from the multi-modal cognitive, exercise and mindfulness
intervention that we employed here.

However, prescribed intervention alone did not differentiate be-
tween performance subgroups or modify the strength of neural corre-
lates. No differential effects by group may indicate that all combina-
tions of activities produced comparable effects, or that no activity
affected Gy. The intervention activities encompassed cognitive training,
physical exercise and mindfulness activities, all of which correlate with
development and maintenance of cognitive ability across the lifespan to
varying degree [90-94]. Yet, acute interventions aimed to promote
cognitive ability, including Gy, appear to not be “one size fits all” and
individuals vary widely in response to the intervention. Here we de-
monstrate that multi-modal intervention does not provide differential
gains but the forces that shaped the developing brain may be of greater
importance. This observation begs for future research to adopt methods
to specifically evaluate the magnitude and source of individual varia-
bility, even in the context of RCT [95].

In application to formal education, this observation bolsters the
continued trend to create diverse lesson plans and flexible assignments
that accommodate an individual student's interests and abilities [96].
Education and learning experiences shape neural cognitive develop-
mental trajectories across the lifespan; and as shown here, pre-inter-
vention ability and regional brain volumes modified an individual's
performance following the acute intervention. Neural cognitive devel-
opment in early life may not only determine adulthood cognitive ability
but also modify efficacy of interventions aimed to improve it.

The evidence we report should be interpreted with consideration of
study strengths and limitations. First, we use a novel approach to study
individual differences in the course of a randomized, multi-modal in-
tervention. However, we evaluated covariates of latent G¢ class mem-
bership selected a priori, and due to the size of the sample, we cannot
include volumetry of all brain regions. Therefore, the analysis provides
insight into multiple neural cognitive systems that predict individual
variability in fluid intelligence functions following a multi-modal in-
tervention. Yet, the analysis is not representative of the entire brain.
Second, we selected volumes of gray matter regions as a proxy indicator
of brain structure. Additional white matter regions, as well as regional
functional activation and metabolic markers, are expected correlates of
fluid intelligence function that we did not examine here. Future studies
may endeavor to integrate multi-modal neuroimaging data to provide a
thorough account of the neural architecture of fluid intelligence and
sources of individual differences in ability.

Third, only two tests of G were repeated in the course of study, and
performance on Figure Series and LSAT did not identify a common
factor and showed different patterns of change with repeated testing
[14]. This constrained the specification of the latent modeling and the
estimates of repeated testing gains are specific to each test, opposed to
latent ability reflective of performance on multiple tests. This was
better addressed with the collection of tests that were administered only
at post-intervention that identified a common factor; nonetheless, this
model limitation should be considered when interpreting the reported
results.
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Fourth, approximately a third of data were missing either by design
or due to study attrition. Data were found to satisfy the statistical as-
sumption of missing at random. However, the motivations and causes
for study attrition may not be random and correlate with cognitive
ability, attention and motivation [97], which are relevant to perfor-
mance on tests of Gr. The current report bases primary hypothesis
testing in the complete sample with intent-to-treat analyses and han-
dled missing data via FIML estimation, which is the current re-
commended approach to longitudinal studies with missing data, in-
cluding intervention designs [59,60,98,99]. Yet, we can only assess
possible correlates of attrition based upon the available data and our
limited assessment should be considered when interpreting the evi-
dence. Analyses were repeated in the sample with complete data and a
similar pattern of effects was identified, although some significance
testing was likely less sensitive in the smaller sample. Further, inclusion
of the entire available sample improves the validity of the estimates. In
this manner, possible nonrandom causes for attrition that may correlate
with performance are represented (albeit imperfectly) in the estimates,
opposed to narrowly defining the model by those individuals who chose
to complete the prescribed intervention.

Fifth, the sample includes healthy, younger adults who lived in a
Midwest United States city, and most of whom were enrolled in a four-
year, public university. Performance on the tests of G¢ and vocabulary
fell within the range of normal intelligence, and therefore we describe
individual differences representative of the typical population.
However, the generalizability of this sample is specific to its demo-
graphic characteristics and it does not represent the diversity of the
broader population.

Finally, the analysis of latent classes only characterized the pattern
of individual differences in G¢ performance and its neural correlates.
The analysis cannot evaluate hypotheses of causal relationships be-
tween brain structures and functions, and should be considered as a
description of the observed data.

5. Conclusions

We present a novel approach to study individual differences in the
course of a randomized, multi-modal intervention study via latent class
analysis. Three latent classes described performance at post-interven-
tion, while controlling for pre-intervention ability: one subgroup (17%)
demonstrated the greatest gains in visuospatial reasoning, stability (and
not decline) in analytical reasoning and above sample-average perfor-
mance on tests that were only administered at post-intervention. This
performance subgroup was differentiated from the lowest performance
subgroup (9% of the sample), and the remaining sample majority, who
notably experienced lesser, but significant, gains in visuospatial ability
and otherwise performed poorly. Volumes of several brain regions that
are implicated in cognitive control, working memory, and relational
processes differentiated between the highest and lowest intervention
response groups. However, regions important to relational processing
and working memory, especially the posterior parahippocampal gyrus
and caudate nucleus, emerged as the strongest predictors of the high
performance subgroup. We find evidence supporting a theoretical ac-
count of fluid intelligence ability that is dependent upon executive
function and buttressed by relational processes. To acquire a better
understanding of the neural architecture of fluid intelligence, future
large-scale studies that adopt multi-modal neuroimaging, multiple
complementary cognitive assessments, and statistical methods for the
assessment of individual differences are necessary.
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