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The formal study of intelligence in psychology began with an effort
to find students in France who might benefit from assistance in
schooling. Binet measured the increase in ability to answer questions
that he felt would improve with age and normalized the scores within
each age with a mean of 100 as a measure of the student's intelligence
quotient [1]. Over the years increasingly sophisticated approaches to
intelligence measurement have been developed [2]. However, the basic
definition of intelligence remained illusive and it has often been said
that intelligence is whatever the intelligence test measures.

The lack of a theoretical definition did not mean that theoretical
issues were not important in the psychology of intelligence. An issue
central to the discussion of intelligence was whether there might be a
single scale of general intelligence (g) along which one might, however
inexactly, array people according to their score. Against the theory
based upon “g” was the view that intelligence is domain specific, either
limited to a small number like 2 (fluid or crystalized, [3,4]) or 7 [5] or
as many as 140 [6] domains.

The idea of multiple intelligences was espoused by Howard Gardner
[5], who defined seven intelligences (domains of individual differences)
which were supported by brain networks as revealed by brain lesion
research. His idea was to consider separate intelligences based upon the
following domains: 1. musical-rhythmic, 2. visual-spatial, 3. verbal-
linguistic, 4. logical-mathematical, 5. bodily-kinesthetic, 6. inter-
personal, and 7. intrapersonal. Gardner's basic idea, of supposing that
brain networks underlie individual differences in different domains,
remains important in the era of imaging. Gardner did not address the
correlation between items, in what, according to his view, were quite
different forms of intelligence. However, his theory of multiple in-
telligences has impact in the field of education, where it spawned new
curricula to address different learning styles, but Gardner had much less
influence in cognitive psychology and cognitive neuroscience.

With the advent of neuroimaging [7] it became possible to move
beyond the lesion studies possible at that time to associate cognitive
tasks in many different domains with specific brain networks [8]. In
general, this involved performing specific cognitive tasks that could be

clustered within a single domain. For example, the Stroop task [9],
flanker task [10] and [11], while quite different, were thought to in-
volve the resolution of conflict [12]. Where different tasks were em-
ployed within the same domain, they often activated highly over-
lapping networks, which were seen as central to the domain. Language,
number, attention, self regard and negative affect were among the most
commonly studied domains.

Early studies investigating the neurobiology of g focused on the
lateral prefrontal cortex [13,14], motivating an influential theory based
on the role of this region in cognitive control functions for intelligent
behavior [15]. The later emergence of network-based theories reflected
an effort to examine the neurobiology of intelligence through a wider
lens, accounting for individual differences in g on the basis of broadly
distributed networks. For example, the Parietal-Frontal Integration
Theory (P-FIT) appeals to the fronto-parietal network to explain in-
dividual differences in intelligence [8,16], proposing that g reflects the
capacity of this network to evaluate and test hypotheses for problem-
solving. A central feature of the P-FIT model is an emphasis on the
integration of knowledge between frontal and parietal cortex, afforded
by white-matter fiber tracks that enable efficient communication
among regions. Evidence to support the fronto-parietal network's role in
a broad range of problem-solving tasks later motivated the Multiple-
Demand (MD) Theory, which proposes that this network underlies at-
tentional control mechanisms for goal-directed problem-solving [17].
Finally, the Process Overlap Theory represents a recent network ap-
proach that accounts for individual differences in g by appealing to the
spatial overlap among specific brain networks, reflecting the shared
cognitive processes underlying g [18]. Thus, many contemporary the-
ories suggest that individual differences in g originate from functionally
localized processes within specific brain regions or networks.

Resting state MRI studies found that brain areas were correlated
even when the person was not performing a task, but instead was in a
resting state [19,20]. These correlations could arise from the high
connectivity between brain areas crucial for everyday life as, for ex-
ample, brain networks related to attention. Functional MRI in the
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resting state supported a fronto-parietal network that in task perfor-
mance is related to rapid shifts of attention such as would be provided
by a cue giving the location of an upcoming target. A cingulo-opercular
network was also identified, which in task performance involved slower
more strategic switches of attention (as, for example in switching be-
tween tasks). In many cases such as attention and language, all people
had the network. However, not all people have equal efficiency of
networks involved in language or attention. Thus it seems natural to
relate individual differences in a domain with the efficiency of the
networks involving that domain. These results from neuroimaging
would support the idea of multiple brain networks each describing the
individual differences within separate domains related to intelligence.
This perspective motivates the Network Neuroscience Theory, which
proposes that g originates from individual differences in the system-
wide topology and dynamics of the human brain [21]. According to this
view, general intelligence reflects individual differences in network
mechanisms for efficient and flexible information processing [21,22].

However, imaging studies could also be used to support a single
domain of general intelligence as suggested by Duncan [23]. Duncan
used imaging and cellular recording data to argue that, in addition to
domain specificity, imaging can provide a single multi-domain network
derived from items that load upon a common general intelligence factor
(). This multiple domain network includes the lateral areas of the
frontal and parietal lobe along with the anterior cingulate and anterior
insula and overlaps two of the networks frequently found in studies of
attention using fMRI (the fronto-parietal network and the cingulo-op-
ercular network). Crittenden, Mitchell and Duncan [24] recognize the
consistency of the fronto-parietal and cingulo-opercular networks with
their multiple demand networks and thus with the loading on general
intelligence. The existence of a single domain general network could
then support the idea that the correlation between various intelligence
tests rests upon their common dependence on attention. This view
would not necessarily imply that the efficiency of one domain specific
network (e.g., for language) was itself correlated with the efficiency of
another network (e.g. music), but correlations among their tests depend
upon their both using the multi-domain network related to attention.

During development, long connections between remote neural areas
increase. These connections gain in efficiency as they become myeli-
nated [25]. Diffusion tensor imaging studies of 1-2 year old children
have found that efficiency of major tracts developing in this period are
correlated [26], suggesting that common genetic factors are crucial in
their development [27]. Efficient connectivity can aid in the develop-
ment of networks underlying skills in different domains, thus providing
a basis for general intelligence (g). In fact, measures of cognitive
functions are significantly correlated with myelination of major path-
ways [26].

It is thus possible to suppose that a correlation between brain net-
works might be induced by a common mechanism for learning new
skills regardless of domain. In a recent rodent study it was found that
DNA methylation of BDNF influenced the long term memory of newly
learned place fields [28]. The role of methylation in the learning and
performance of skills also extends to humans.

People with a genetic variation of the MTHFR (methylenetetrahy-
drofolate reductase) gene that increases the efficiency of methylation
show faster learning rate and higher performance in a variety of speed
related human skills [29,30]. While these studies dealt with alleles of
only one gene it is likely that many individual genes would be involved
in conduction speed and reliability [31].

How might improved rate of learning by those with more efficient
methylation come about? One possibility is that higher methylation
improves the efficiency of synaptic plasticity. Another possible me-
chanism is that more efficient methylation improves myelination of
axons that occur during learning [32]. Myelination would improve the
speed and reliability of the long connections between the often remote
areas important for orchestrating performance [31]. Some support for
this view comes from a human and monkey study in which
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morphometric similarity networks defined from MRI were used as a
proxy for degree of connectivity between neural areas. The authors
predicted that individual differences in this measure would correlate
with IQ measured in the same human subjects. The outcome supported
their conjecture and thus suggests that the efficiency of white matter is
related to IQ [33].

There is little question that specific and often mostly non-over-
lapping brain networks underlie a variety of skills that are constituents
of intelligent behavior. At the same time there is also little doubt that a
variety of tests of intelligence are correlated across domains. The spe-
cific mechanisms that underlie “g” still remain to be established. Three
prominent possibilities are: (1) system-wide network mechanisms for
efficient and flexible information processing, (2) multipurpose brain
networks such as those underlying attention and (3) molecular me-
chanisms that underlie common mechanisms of learning. These are not
mutually exclusive and represent mechanisms at multiple levels of
granularity (i.e., system-wide, network-based, and molecular-level
mechanisms). As we await further investigation of these mechanisms
there are insights from both separate brain networks and a common g
factor that can be applied to foster better achievement in educational
settings.
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