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Introduction

Flexibility is central to human intelligence and is made possible by the
brain’s remarkable capacity to reconfigure itself – to continually update prior
knowledge on the basis of new information and to actively generate internal
predictions that guide adaptive behavior and decision making. Rather than
lying dormant until stimulated, contemporary research conceives of the brain
as a dynamic and active inference generator that anticipates incoming sensory
inputs, forming hypotheses about that world that can be tested against sensory
signals that arrive in the brain (Clark, 2013; Friston, 2010). Plasticity is
therefore critical for the emergence of human intelligence, providing a power-
ful mechanism for updating prior beliefs, generating dynamic predictions
about the world, and adapting in response to ongoing changes in the environ-
ment (Barbey, 2018). This perspective provides a catalyst for contemporary
research on human intelligence, breaking away from the classic view that
general intelligence (g) originates from individual differences in a fixed set of
cortical regions or a singular brain network (for reviews, see Haier, 2017;
Posner & Barbey, 2020).
Early studies investigating the neurobiology of g focused on the lateral

prefrontal cortex (Barbey, Colom, & Grafman, 2013b; Duncan et al., 2000),
motivating an influential theory based on the role of this region in cognitive
control functions for intelligent behavior (Duncan & Owen, 2000). The later
emergence of network-based theories reflected an effort to examine the neuro-
biology of intelligence through a wider lens, accounting for individual
differences in g on the basis of broadly distributed networks. For example,
the Parietal-Frontal Integration Theory (P-FIT) was the first to propose that
“a discrete parieto-frontal network underlies intelligence” (Jung & Haier,
2007) and that g reflects the capacity of this network to evaluate and test
hypotheses for problem-solving (see also Barbey et al., 2012). A central feature
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of the P-FIT model is the integration of knowledge between the frontal and
parietal cortex, afforded by white-matter fiber tracks that enable efficient
communication among regions. Evidence to support the fronto-parietal net-
work’s role in a wide range of problem-solving tasks later motivated the
Multiple-Demand (MD) Theory, which proposes that this network underlies
attentional control mechanisms for goal-directed problem-solving (Duncan,
2010). Finally, the Process Overlap Theory represents a recent network
approach that accounts for individual differences in g by appealing to the
spatial overlap among specific brain networks, reflecting the shared cognitive
processes underlying g (Kovacs & Conway, 2016). Thus, contemporary theor-
ies suggest that individual differences in g originate from functionally localized
processes within specific brain regions or networks (Table 6.1; for a compre-
hensive review of cognitive neuroscience theories of intelligence, see
Chapter 5, by Euler and McKinney).

Network Neuroscience Theory adopts a new perspective, proposing that g
originates from individual differences in the system-wide topology and
dynamics of the human brain (Barbey, 2018). According to this approach,
the small-world topology of brain networks enables the rapid reconfiguration
of their modular community structure, creating globally-coordinated mental
representations of a desired goal-state and the sequence of operations required
to achieve it. This chapter surveys recent evidence within the rapidly develop-
ing field of network neuroscience that assess the nature and mechanisms of
general intelligence (Barbey, 2018; Girn, Mills, & Christoff, 2019) (for an

Table 6.1 Summary of cognitive neuroscience theories of human intelligence.

Functional Localization
System-Wide Topology and

Dynamics

Primary
Region

Primary
Network

Multiple
Networks

Small-
World
Topology

Network
Flexibility

Network
Dynamics

Lateral PFC
Theory

✔ ✘ ✘ ✘ ✘ ✘

P-FIT Theory* ✘ ✔ ✘ ✘ ✘ ✘

MD Theory ✘ ✔ ✘ ✘ ✘ ✘

Process Overlap
Theory

✘ ✘ ✔ ✘ ✘ ✘

Network
Neuroscience

Theory

✘ ✘ ✔ ✔ ✔ ✔

* The P-FIT theory was the first to propose that “a discrete parieto-frontal network underlies
intelligence” (Jung & Haier, 2007).
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introduction to modern methods in network neuroscience, see Chapter 2, by
Hilger and Sporns). We identify directions for future research that aim to
resolve prior methodological limitations and further investigate the hypothesis
that general intelligence reflects individual differences in network mechanisms
for (i) efficient and (ii) flexible information processing.

Network Efficiency

Early research in the neurosciences revealed that the brain is designed
for efficiency – to minimize the cost of information processing while maximiz-
ing the capacity for growth and adaptation (Bullmore & Sporns, 2012; Ramón
y Cajal, Pasik, & Pasik, 1999). Minimization of cost is achieved by dividing
the cortex into anatomically localized modules, comprised of densely inter-
connected regions or nodes. The spatial proximity of nodes within each
module reduces the average length of axonal projections (conservation of
space and material), increasing the signal transmission speed (conservation
of time) and promoting local efficiency (Latora & Marchiori, 2001). This
compartmentalization of function enhances robustness to brain injury by
limiting the likelihood of global system failure (Barbey et al., 2015). Indeed,
the capacity of each module to function and modify its operations without
adversely effecting other modules enables cognitive flexibility (Barbey, Colom,
& Grafman, 2013a) and therefore confers an important adaptive advantage
(Bassett & Gazzaniga, 2011; Simon, 1962).
Critically, however, the deployment of modules for coordinated system-

wide function requires a network architecture that also enables global infor-
mation processing. Local efficiency is therefore complemented by global
efficiency, which reflects the capacity to integrate information across the
network as a whole and represents the efficiency of the system for information
transfer between any two nodes. This complementary aim, however, creates a
need for long-distance connections that incur a high wiring cost. Thus, an
efficient design is achieved by introducing competing constraints on brain
organization, demanding a decrease in the wiring cost for local specialization
and an opposing need to increase the connection distance to facilitate global,
system-wide function.
These competing constraints are captured by formal models of network top-

ology (Deco, Tononi, Boly, &Kringelbach, 2015) (Figure 6.1). Local efficiency is
embodied by a regular network or lattice, in which each node is connected to
an equal number of its nearest neighbors, supporting direct local communication
in the absence of long-range connections. In contrast, global efficiency is exempli-
fied by a random network, in which each node connects on average to any other
node, including connections between physically distant regions.
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Recent discoveries in network neuroscience suggest that the human brain
balances these competing constraints by incorporating elements of a regular
and random network to create a small-world topology (Bassett & Bullmore,
2006, 2017; Watts & Strogatz, 1998). A small-world network embodies
(i) short-distance connections that reduce the wiring cost (high local clustering),
along with (ii) long-distance connections that provide direct topological links
or short-cuts that promote global information processing (short path length).
Together, these features enable high local and global efficiency at relatively low
cost, providing a parsimonious architecture for human brain organization
(Robinson, Henderson, Matar, Riley, & Gray, 2009; Sporns, Tononi, &
Edelman, 2000a, b; van der Maas et al., 2006). Evidence further indicates that
efficient network organization is based on routing strategies that combine local
and global information about brain network topology in an effort to approxi-
mate a small-world architecture (Avena-Koenigsberger et al., 2019).

Research in network neuroscience has consistently observed that the top-
ology of human brain networks indeed exemplifies a small-world architecture,
which has been demonstrated across multiple neuroimaging modalities, includ-
ing structural (He, Chen, & Evans, 2007), functional (Achard & Bullmore,
2007; Achard, Salvador, Whitcher, Suckling, & Bullmore, 2006; Eguiluz,
Chialvo, Cecchi, Baliki, & Apkarian, 2005), and diffusion tensor magnetic
resonance imaging (MRI) (Hagmann et al., 2007). Alterations in the topology
of a small-world network have also been linked to multiple disease states (Stam,
2014; Stam, Jones, Nolte, Breakspear, & Scheltens, 2007), stages of lifespan
development (Zuo et al., 2017), and pharmacological interventions (Achard &
Bullmore, 2007), establishing their importance for understanding human

Figure 6.1 Small-world network. Human brain networks exhibit a small-world
topology that represents a parsimonious balance between a regular brain
network, which promotes local efficiency, and a random brain network, which
enables global efficiency. Figure modified with permission from Bullmore and
Sporns (2012)
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health, aging, and disease (Bassett & Bullmore, 2009). Emerging neuroscience
evidence further indicates that general intelligence is directly linked to charac-
teristics of a small-world topology, demonstrating that individual differences in
g are associated with network measures of global efficiency.

Small-World Topology and General Intelligence

The functional topology and community structure of the human brain has
been extensively studied through the application of resting-state functional
MRI, which examines spontaneous low frequency fluctuations of the blood-
oxygen-level dependent (BOLD) signal. This method demonstrates coherence
in brain activity across spatially distributed regions to reveal a core set of
intrinsic connectivity networks (ICNs; Figure 6.2a) (Achard et al., 2006;
Biswal, Yetkin, Haughton, & Hyde, 1995; Buckner et al., 2009; Bullmore &
Sporns, 2009; Power & Petersen, 2013; Power et al., 2011; Smith et al., 2013;
Sporns, Chialvo, Kaiser, & Hilgetag, 2004; van den Heuvel, Mandl, Kahn, &
Hulshoff Pol, 2009). Functional brain networks largely converge with the
structural organization of networks measured using diffusion tensor MRI
(Byrge, Sporns, & Smith, 2014; Hagmann et al., 2007; Park & Friston,
2013), together providing a window into the community structure from which
global information processing emerges.
The discovery that global brain network efficiency is associated with general

intelligence was established by van den Heuvel, Stam, Kahn, and Hulshoff Pol
(2009), who observed that g was positively correlated with higher global effi-
ciency (as indexed by a globally shorter path length) (for earlier research on
brain network efficiency using PET; see Haier et al., 1988). Santarnecchi, Galli,
Polizzotto, Rossi, and Rossi (2014) further examined whether this finding
reflects individual differences in connectivity strength, investigating the rela-
tionship between general intelligence and global network efficiency derived
from weakly vs. strongly connected regions. Whereas strong connections pro-
vide the basis for densely connected modules, weak links index long-range
connections that typically relay information between (rather than within)
modules. The authors replicated van den Heuvel, Stam, et al. (2009) and further
demonstrated that weakly connected regions explain more variance in g than
strongly connected regions (Santarnecchi et al., 2014), supporting the hypoth-
esis that global efficiency and the formation of weak connections are central to
general intelligence. Further support for the role of global efficiency in general
intelligence is provided by EEG studies, which examine functional connectivity
as coherence between time series of distant EEG channels measured at rest. For
instance, Langer and colleagues provide evidence for a positive association
between g and the small-world topology of intrinsic brain networks derived
from EEG (Langer, Pedroni, & Jancke, 2013; Langer et al., 2012).
Complementary research examining the global connectivity of regions

within the prefrontal cortex also supports a positive association with measures
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Figure 6.2 Intrinsic connectivity networks and network flexibility. (A) Functional
networks drawn from a large-scale meta-analysis of peaks of brain activity for
a wide range of cognitive, perceptual, and motor tasks. Upper left figure
represents a graph theoretic embedding of the nodes. Similarity between nodes
is represented by spatial distance, and nodes are assigned to their
corresponding network by color. Middle and right sections present the nodal
and voxel-wise network distribution in both hemispheres. Figure modified with
permission from Power and Petersen (2013). (B) Left graph illustrates the
percent of regions within each intrinsic connectivity network that can transition
to many easy-to-reach network states, primarily within the default mode
network. Right graph illustrates the percent of regions within each intrinsic
connectivity network that can transition to many difficult-to-reach network
states, primarily within cognitive control networks. Figure modified with
permission from Gu et al. (2015)
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of intelligence. For example, Cole, Ito, and Braver (2015) and Cole, Yarkoni,
Repovš, Anticevic, and Braver (2012) observed that the global connectivity of
the left lateral prefrontal cortex (as measured by the average connectivity
of this region with every other region in the brain) demonstrates a positive
association with fluid intelligence. Converging evidence is provided by
Song et al. (2008), who found that the global connectivity of the bilateral
dorsolateral prefrontal cortex was associated with general intelligence. To
integrate the diversity of studies investigating the role of network efficiency
in general intelligence – and to account for null findings (Kruschwitz, Waller,
Daedelow, Walter, & Veer, 2018) – it will be important to examine differences
among studies with respect to resting-state fMRI data acquisition, pre-
processing, network analysis, and the study population.
A central question concerns whether resting-state fMRI is sufficiently

sensitive or whether task-based fMRI methods provide a more powerful lens
to examine the role of network efficiency in general intelligence. Indeed, a
growing body of evidence suggests that functional brain network organization
measured during cognitive tasks is a stronger predictor of intelligence
than when measured during resting-state fMRI (Greene, Gao, Scheinost, &
Constable, 2018; Xiao, Stephen, Wilson, Calhoun, & Wang, 2019). This
literature has primarily employed task-based fMRI paradigms investigating
cognitive control, specifically within the domain of working memory (for a
review, see Chapter 13, by Cohen and D’Esposito).
For example, fMRI studies investigating global brain network organization

have revealed that working memory task performance is associated with an
increase in network integration and a decrease in network segregation (Cohen
& D’Esposito, 2016; see also Gordon, Stollstorff, & Vaidya, 2012; Liang, Zou,
He, & Yang, 2016). Increased integration was found primarily within networks
for cognitive control (e.g., the fronto-parietal and cingular-opercular networks)
and for task-relevant sensory processing (e.g., the somatomotor network)
(Cohen, Gallen, Jacobs, Lee, & D’Esposito, 2014). Thus, global brain network
integration measured by task-based fMRI provides a powerful lens for further
characterizing the role of network efficiency in high-level cognitive processes
(e.g., cognitive control and working memory). Increasingly, scientists have
proposed that high-level cognitive operations emerge from brain network
dynamics (Breakspear, 2017; Cabral, Kringelbach, & Deco, 2017; Deco &
Corbetta, 2011; Deco, Jirsa, & McIntosh, 2013), motivating an investigation
of their role in general intelligence.

Network Flexibility and Dynamics

Recent discoveries in network neuroscience motivate a new perspec-
tive about the role of global network dynamics in general intelligence –

marking an important point of departure from the standard view that
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intelligence originates from individual differences in a fixed set of cortical
regions (Duncan et al., 2000) or a singular brain network (Barbey et al.,
2012; Duncan, 2010; Jung & Haier, 2007) (Table 6.1). Accumulating evidence
instead suggests that network efficiency and dynamics are critical for the
diverse range of mental abilities underlying general intelligence (for earlier
research on brain network efficiency using PET; see Haier et al. (1988)).

Network Dynamics of Crystallized Intelligence

Global information processing is enabled by the hierarchical community
structure of the human brain, with modules that are embedded within modules
to form complex, interconnected networks (Betzel & Bassett, 2017; Meunier,
Lambiotte, & Bullmore, 2010). This infrastructure is supported, in part, by
nodes of high connectivity or hubs (Buckner et al., 2009; Hilger, Ekman,
Fiebach, & Basten, 2017a, b; Power, Schlaggar, Lessov-Schlaggar, &
Petersen, 2013; van den Heuvel & Sporns, 2013). These regions serve distinct
roles either as provincial hubs, which primarily connect to nodes within the
same module, or as connector hubs, which instead provide a link between
distinct modules (Guimera & Nunes Amaral, 2005). Hubs are therefore essen-
tial for transferring information within and between ICNs and provide the
basis for mutual interactions between cognitive processes (Bertolero, Yeo, &
D’Esposito, 2015; van der Maas et al., 2006). Indeed, strongly connected hubs
together comprise a rich club network that mediates almost 70% of the
shortest paths throughout the brain and is therefore important for global
network efficiency (van den Heuvel & Sporns, 2011).

By applying engineering methods to network neuroscience, research from
the field of network control theory further elucidates how brain network
dynamics are shaped by the topology of strongly connected hubs, examining
their capacity to act as drivers (network controllers) that move the system
into specific network states (Gu et al., 2015). According to this approach, the
hierarchical community structure of the brain may facilitate or constrain
the transition from one network state to another, for example, by enabling a
direct path that requires minimal transitions (an easy-to-reach network
state) or a winding path that requires many transitions (a difficult-to-reach
network state). Thus, by investigating how the brain is organized to form
topologically direct or indirect pathways (comprising short- and long-distance
connections), powerful inferences about the flexibility and dynamics of ICNs
can be drawn.

Recent studies applying this approach demonstrate that strongly connected
hubs enable a network to function within many easy-to-reach states (Gu et al.,
2015), engaging highly accessible representations of prior knowledge and
experience that are a hallmark of crystallized intelligence (Carroll, 1993;
Cattell, 1971; McGrew & Wendling, 2010). Extensive neuroscience data indi-
cate that the topology of brain networks is shaped by learning and prior
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experience – reflecting the formation of new neurons, synapses, connections,
and blood supply pathways that promote the accessibility of crystallized know-
ledge (Bassett et al., 2011; Buchel, Coull, & Friston, 1999; Pascual-Leone,
Amedi, Fregni, & Merabet, 2005). The capacity to engage easy-to-reach net-
work states – and therefore to access crystallized knowledge – is exhibited by
multiple ICNs, most prominently for the default mode network (Betzel, Gu,
Medaglia, Pasqualetti, & Bassett, 2016; Gu et al., 2015) (Figure 6.2b). This
network is known to support semantic and episodic memory representations
that are central to crystallized intelligence (Christoff, Irving, Fox, Spreng, &
Andrews-Hanna, 2016; Kucyi, 2018; St Jacques, Kragel, & Rubin, 2011; Wirth
et al., 2011) and to provide a baseline, resting state from which these repre-
sentations can be readily accessed. Thus, according to this view, crystallized
abilities depend on accessing prior knowledge and experience through the
engagement of easily reachable network states, supported, for example, by
strongly connected hubs within the default mode network (Betzel, Gu et al.,
2016; Gu et al., 2015).

Network Dynamics of Fluid Intelligence

Although the utility of strongly connected hubs is well-recognized, a growing
body of evidence suggests that they may not fully capture the higher-order
structure of brain network organization and the flexibility of information
processing that this global structure is known to afford (Schneidman, Berry,
Segev, & Bialek, 2006). Research in network science has long appreciated that
global information processing depends on the formation of weak ties, which
comprise nodes with a small number of connections (Bassett & Bullmore,
2006, 2017; Granovetter, 1973). By analogy to a social network, a weak tie
represents a mutual acquaintance that connects two groups of close friends,
providing a weak link between multiple modules. In contrast to the intuition
that strong connections are optimal for network function, the introduction of
weak ties is known to produce a more globally efficient small-world topology
(Gallos, Makse, & Sigman, 2012; Granovetter, 1973).
Research investigating their role in brain network dynamics further indicates

that weak connections enable the system to function within many difficult-to-
reach states (Gu et al., 2015), reflecting a capacity to adapt to novel situations
by engaging mechanisms for flexible, intelligent behavior. Unlike the easily
reachable network states underlying crystallized intelligence, difficult-to-reach
states rely on connections and pathways that are not well-established from
prior experience – instead requiring the adaptive selection and assembly of new
representations that introduce high cognitive demands. The capacity to access
difficult-to-reach states is exhibited by multiple ICNs, most notably the fronto-
parietal and cingulo-opercular networks (Gu et al., 2015) (Figure 6.2b).
Together, these networks are known to support cognitive control, enabling
the top-down regulation and control of mental operations (engaging the

110 a. k. barbey

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635462.009
Downloaded from https://www.cambridge.org/core. University of Illinois at Urbana-Champaign Library, on 15 Jun 2021 at 15:23:47, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635462.009
https://www.cambridge.org/core


fronto-parietal network) in response to environmental change and adaptive
task goals (maintained by the cingulo-opercular network) (Dosenbach, Fair,
Cohen, Schlaggar, & Petersen, 2008).

Converging evidence from resting-state fMRI and human lesion studies
strongly implicates the fronto-parietal network in cognitive control, demon-
strating that this network accounts for individual differences in adaptive
reasoning and problem-solving – assessed by fMRI measures of global
efficiency (Cole et al., 2012; Santarnecchi et al., 2014; van den Heuvel,
Stam, et al., 2009) and structural measures of brain integrity (Barbey,
Colom, Paul, & Grafman, 2014; Barbey et al., 2012, 2013a; Glascher et al.,
2010). From this perspective, the fronto-parietal network’s role in fluid intelli-
gence reflects a global, system-wide capacity to adapt to novel environments,
engaging cognitive control mechanisms that guide the dynamic selection and
assembly of mental operations required for goal achievement (Duncan,
Chylinski, Mitchell, & Bhandari, 2017). Thus, rather than attempt to localize
individual differences in fluid intelligence to a specific brain network, this
framework instead suggests that weak connections within the fronto-parietal
and cingulo-opercular networks (Cole et al., 2012; Santarnecchi et al., 2014)
drive global network dynamics – flexibly engaging difficult-to-reach states in
the service of adaptive behavior and providing a window into the architecture
of individual differences in general intelligence at a global level.

Network Dynamics of General Intelligence

Recent discoveries in network neuroscience motivate a new perspective about
the role of global network dynamics in general intelligence – breaking away
from standard theories that account for individual differences in g on the basis
of a single brain region (Duncan et al., 2000), a primary brain network
(Barbey et al., 2012; Duncan, 2010; Jung & Haier, 2007), or the overlap
among specific networks (Kovacs & Conway, 2016). Accumulating evidence
instead suggests that network flexibility and dynamics are critical for the
diverse range of mental abilities underlying general intelligence.

According to Network Neuroscience Theory, the capacity of ICNs to
transition between network states is supported by their small-world topology,
which enables each network to operate in a critical state that is close to a phase
transition between a regular and random network (Beggs, 2008; Petermann
et al., 2009) (Figure 6.1). The transition toward a regular network configur-
ation is associated with the engagement of specific cognitive abilities, whereas
the transition toward a random network configuration is linked to the engage-
ment of broad or general abilities (Figure 6.1).

Rather than reflect a uniform topology of dynamic states, emerging
evidence suggests that ICNs exhibit different degrees of variability (Betzel,
Gu et al., 2016; Mattar, Betzel, & Bassett, 2016) – elucidating the network
architecture that supports flexible, time-varying profiles of functional
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connectivity. Connections between modules are known to fluctuate more than
connections within modules, demonstrating greater dynamic variability for
connector hubs relative to provincial hubs (Zalesky, Fornito, Cocchi, Gollo,
& Breakspear, 2014; Zhang et al., 2016). Thus, the modular community
structure of specific mental abilities provides a stable foundation upon which
the more flexible, small-world topology of broad mental abilities is con-
structed (Hampshire, Highfield, Parkin, & Owen, 2012). The dynamic flexibil-
ity of ICNs underlying broad mental abilities (Figure 6.2b) is known to reflect
their capacity to access easy- vs. difficult-to-reach states, with greatest
dynamic flexibility exhibited by networks that are strongly associated with
fluid intelligence, particularly the fronto-parietal network (Figure 6.3) (Braun
et al., 2015; Cole et al., 2013; Shine et al., 2016).

Figure 6.3 Dynamic functional connectivity. (A) Standard deviation in
resting-state BOLD fMRI reveals regions of low (blue), moderate (green),
and high (red) variability. (B) Dynamic functional connectivity matrices are
derived by windowing time series and estimating the functional connectivity
between pairs of regions. Rather than remain static, functional connectivity
matrices demonstrate changes over time, revealing dynamic variability in the
connectivity profile of specific brain regions. (C) Dynamic functional
connectivity matrices can be used to assess the network’s modular structure at
each time point, revealing regions of low or high temporal dynamics. Figure
modified with permission from Mattar et al. (2016)
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Functional Brain Network Reconfiguration

Accumulating evidence examines the dynamic reconfiguration of brain net-
works in the service of goal-directed, intelligent behavior. Recent findings
indicate that the functional reconfiguration of brain networks (i.e., greater
network flexibility) is positively associated with learning and performance on
tests of executive function. For example, Bassett et al. (2011) found that
functional network flexibility (as measured by changes in the modular struc-
ture of brain networks) predicted future learning in a simple motor task.
Converging evidence is provided by Braun et al. (2015), who examined
functional brain network reconfiguration in a continuous recognition memory
task (i.e., n-back) and observed that higher cognitive load was associated with
greater network reorganization within frontal cortex.

In addition, Jia, Hu, and Deshpande (2014) examined functional brain
network dynamics in the context of resting-state fMRI, investigating the
stability of connections over time. The authors found that performance
on tests of executive function was associated with the average stability of
connections examined at the whole brain level, with greater brain network
reconfiguration (i.e., lower stability) predicting higher performance. Notably,
the highest level of functional brain network reconfiguration was observed
within the fronto-parietal network (Jia et al., 2014; see also, Hilger,
Fukushima, Sporns, & Fiebach, 2020). Taken together, these findings support
the role of flexible brain network reconfiguration in goal-directed, intelligent
behavior.

Additional evidence to support this conclusion is provided by studies that
investigate the efficiency of functional brain network reconfiguration in the
context of task performance. For example, Schultz and Cole (2016) examined
the similarity between functional connectivity patterns observed at rest vs.
during three task conditions (language, working memory, and reasoning).
The authors predicted that greater reconfiguration efficiency (as measured
by the similarity between the resting-state and task-based connectomes)
would be associated with better performance. Consistent with this prediction,
the authors found that individuals with greater reconfiguration efficiency
demonstrated better task performance and that this measure was positively
associated with general intelligence. This finding emphasizes the importance
of reconfiguration efficiency in task performance and supports the role of
flexible, dynamic network mechanisms for general intelligence.

Network Neuroscience Theory motivates new predictions about the role of
network dynamics in learning, suggesting that the early stages of learning
depend on adaptive behavior and the engagement of difficult-to-reach net-
work states, followed by the transfer of skills to easily reachable network states
as knowledge and experience are acquired to guide problem-solving. Indeed,
recent findings suggest that the development of fluid abilities from childhood
to young adulthood is associated with individual differences in the flexible
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reconfiguration of brain networks for fluid intelligence (Chai et al., 2017).
A recent study by Finc et al. (2020) examined the dynamic reconfiguration
of functional brain networks during working memory training, providing
evidence that early stages of learning engage cognitive control networks for
adaptive behavior, followed by increasing reliance upon the default mode
network as knowledge and skills are acquired (Finc et al., 2020), supporting
the predictions of the Network Neuroscience Theory.
A primary direction for future research is to further elucidate how the

flexible reconfiguration of brain networks is related to general intelligence,
with particular emphasis on mechanisms for cognitive control. Although brain
networks underlying cognitive control have been extensively studied, their
precise role in specific, broad, and general facets of intelligence remain to be
well characterized (Mill, Ito, & Cole, 2017). Future research therefore aims to
integrate the wealth of psychological and psychometric evidence on the cogni-
tive processes underlying general intelligence (Carroll, 1993) and cognitive
control (Friedman &Miyake, 2017) with research on the network mechanisms
underlying these processes (Barbey, Koenigs, & Grafman, 2013; Barbey et al.,
2012, 2013b) in an effort to better characterize the cognitive and neurobio-
logical foundations of general intelligence.

Conclusion

Network Neuroscience Theory raises new possibilities for understand-
ing the nature and mechanisms of human intelligence, suggesting that inter-
disciplinary research in the emerging field of network neuroscience can
advance our understanding of one of the most profound problems of intellec-
tual life: How individual differences in general intelligence – which give rise
to the stunning diversity and uniqueness of human identity and personal
expression – originate from the network organization of the human brain.
The reviewed findings elucidate the global network architecture underlying
individual differences in g, drawing upon recent studies investigating the
small-world topology and dynamics of human brain networks. Rather than
attribute individual differences in general intelligence to a single brain region
(Duncan et al., 2000), a primary brain network (Barbey et al., 2012; Duncan,
2010; Jung & Haier, 2007), or the overlap among specific networks (Kovacs &
Conway, 2016), the proposed theory instead suggests that general intelligence
depends on the dynamic reorganization of ICNs – modifying their topology
and community structure in the service of system-wide flexibility and adapta-
tion (Table 6.1). This framework sets the stage for new approaches to under-
standing individual differences in general intelligence and motivates important
questions for future research, namely:

• What are the neurobiological foundations of individual differences in
g? Does the assumption that g originates from a primary brain region
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or network remain tenable, or should theories broaden the scope of
their analysis to incorporate evidence from network neuroscience on
individual differences in the global topology and dynamics of the
human brain?

• To what extent does brain network dynamics account for individual differ-
ences in specific, broad, and general facets of intelligence and do mechanisms
for cognitive control figure prominently? To gain a better understanding of
this issue, a more fundamental characterization of network dynamics will
be necessary.

• In what respects are ICNs dynamic?, how do strong and weak connections
enable specific network transformations?, and what mental abilities do
network dynamics support?

• How does the structural topology of ICNs shape their functional dynamics
and the capacity to flexibly transition between network states? To what
extent is our current understanding of network dynamics limited by an
inability to measure more precise temporal profiles or to capture higher-
order representations of network topology at a global level?

As the significance and scope of these issues would suggest, many fundamental
questions about the nature and mechanisms of human intelligence remain to
be investigated and provide a catalyst for contemporary research in network
neuroscience. By investigating the foundations of general intelligence in global
network dynamics, the burgeoning field of network neuroscience will continue
to advance our understanding of the cognitive and neural architecture from
which the remarkable constellation of individual differences in human
intelligence emerge.

Acknowledgments

This work was supported by the Office of the Director of National
Intelligence (ODNI), Intelligence Advanced Research Projects Activity
(IARPA), via Contract 2014-13121700004 to the University of Illinois at
Urbana-Champaign (PI: Barbey) and the Department of Defense, Defense
Advanced Research Projects Activity (DARPA), via Contract 2019-
HR00111990067 to the University of Illinois at Urbana-Champaign
(PI: Barbey). The views and conclusions contained herein are those of the
author and should not be interpreted as necessarily representing the official
policies or endorsements, either expressed or implied, of the ODNI, IARPA,
DARPA, or the US Government. The US Government is authorized to
reproduce and distribute reprints for Governmental purposes notwithstanding
any copyright annotation thereon. Preparation of this chapter was based on
and adapted from research investigating the Network Neuroscience Theory
of human intelligence (Barbey, 2018).

Human Intelligence and Network Neuroscience 115

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635462.009
Downloaded from https://www.cambridge.org/core. University of Illinois at Urbana-Champaign Library, on 15 Jun 2021 at 15:23:47, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635462.009
https://www.cambridge.org/core


References

Achard, S., & Bullmore, E. (2007). Efficiency and cost of economical brain functional
networks. PLoS Computational Biology, 3, e17.

Achard, S., Salvador, R., Whitcher, B., Suckling, J., & Bullmore, E. (2006). A resilient,
low-frequency, small-world human brain functional network with highly
connected association cortical hubs. Journal of Neuroscience, 26(1), 63–72.

Avena-Koenigsberger, A., Yan, X., Kolchinsky, A., van denHeuvel,M. P., Hagmann, P.,
& Sporns, O. (2019). A spectrum of routing strategies for brain networks. PLoS
Computational Biology, 15, e1006833.

Barbey, A. K. (2018). Network neuroscience theory of human intelligence. Trends in
Cognitive Sciences, 22(1), 8-20.

Barbey, A. K., Belli, T., Logan, A., Rubin, R., Zamroziewicz, M., & Operskalski, T.
(2015). Network topology and dynamics in traumatic brain injury Current
Opinion in Behavioral Sciences, 4, 92–102.

Barbey, A. K., Colom, R., & Grafman, J. (2013a). Architecture of cognitive flexibility
revealed by lesion mapping. Neuroimage, 82, 547–554.

Barbey, A. K., Colom, R., & Grafman, J. (2013b). Dorsolateral prefrontal contribu-
tions to human intelligence. Neuropsychologia, 51(7), 1361–1369.

Barbey, A. K., Colom, R., Paul, E. J., & Grafman, J. (2014). Architecture of fluid
intelligence and working memory revealed by lesion mapping. Brain Structure
and Function, 219(2), 485–494.

Barbey, A. K., Colom, R., Solomon, J., Krueger, F., Forbes, C., & Grafman, J. (2012).
An integrative architecture for general intelligence and executive function
revealed by lesion mapping. Brain, 135(4), 1154–1164.

Barbey, A. K., Koenigs, M., & Grafman, J. (2013c). Dorsolateral prefrontal contribu-
tions to human working memory. Cortex, 49(5), 1195–1205.

Bassett, D. S., & Bullmore, E. (2006). Small-world brain networks. Neuroscientist,
12(6), 512–523.

Bassett, D. S., & Bullmore, E. T. (2009). Human brain networks in health and disease.
Current Opinion in Neurology, 22(4), 340–347.

Bassett, D. S., & Bullmore, E. T. (2017). Small-world brain networks revisited.
Neuroscientist, 23(5), 499–516.

Bassett, D. S., & Gazzaniga, M. S. (2011). Understanding complexity in the human
brain. Trends in Cognitive Sciences, 15(5), 200–209.

Bassett, D. S., Wymbs, N. F., Porter, M. A., Mucha, P. J., Carlson, J. M., & Grafton, S.
T. (2011). Dynamic reconfiguration of human brain networks during learning.
Proceedings of the National Academy of Sciences USA, 108(18), 7641–7646.

Beggs, J. M. (2008). The criticality hypothesis: How local cortical networks might
optimize information processing. Philosophical Transactions of the Royal
Society A: Mathematical, Physical and Engineering Science, 366(1864),
329–343.

Bertolero, M. A., Yeo, B. T., & D’Esposito, M. (2015). The modular and integrative
functional architecture of the human brain. Proceedings of the National
Academy of Sciences USA, 112(49), E6798–6807.

Betzel, R. F., & Bassett, D. S. (2017). Multi-scale brain networks. Neuroimage, 160,
73–83.

116 a. k. barbey

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635462.009
Downloaded from https://www.cambridge.org/core. University of Illinois at Urbana-Champaign Library, on 15 Jun 2021 at 15:23:47, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635462.009
https://www.cambridge.org/core


Betzel, R. F., Gu, S., Medaglia, J. D., Pasqualetti, F., & Bassett, D. S. (2016).
Optimally controlling the human connectome: the role of network topology.
Science Reports, 6, 30770.

Betzel, R. F., Satterthwaite, T. D., Gold, J. I., & Bassett, D. S. (2016). A positive
mood, a flexible brain. arXiv preprint.

Biswal, B., Yetkin, F. Z., Haughton, V. M., & Hyde, J. S. (1995). Functional connect-
ivity in the motor cortex of resting human brain using echo-planar MRI.
Magnetic Resonance Medicine, 34(4), 537–541.

Braun, U., Schäfer, A., Walter, H., Erk, S., Romanczuk-Seiferth, N., Haddad, L., . . .
Bassett, D. S. (2015). Dynamic reconfiguration of frontal brain networks
during executive cognition in humans. Proceedings of the National Academy
of Sciences USA, 112(37), 11678–11683.

Breakspear, M. (2017). Dynamic models of large-scale brain activity. Nature
Neuroscience, 20, 340–352.

Buchel, C., Coull, J. T., & Friston, K. J. (1999). The predictive value of changes
in effective connectivity for human learning. Science, 283(5407),
1538–1541.

Buckner, R. L., Sepulcre, J., Talukdar, T., Krienen, F. M., Liu, H., Hedden, T., . . .
Johnson, K. A. (2009). Cortical hubs revealed by intrinsic functional connect-
ivity: Mapping, assessment of stability, and relation to Alzheimer’s disease.
Journal of Neuroscience, 29(6), 1860–1873.

Bullmore, E., & Sporns, O. (2009). Complex brain networks: Graph theoretical analy-
sis of structural and functional systems. Nature Reviews Neuroscience, 10,
186–198.

Bullmore, E., & Sporns, O. (2012). The economy of brain network organization.
Nature Reviews Neuroscience, 13, 336–349.

Byrge, L., Sporns, O., & Smith, L. B. (2014). Developmental process emerges from
extended brain-body-behavior networks. Trends in Cognitive Sciences, 18(8),
395–403.

Cabral, J., Kringelbach, M. L., & Deco, G. (2017). Functional connectivity dynamic-
ally evolves on multiple time-scales over a static structural connectome:
Models and mechanisms. Neuroimage, 160, 84–96.

Carroll, J. B. (1993). Human cognitive abilities: A survey of factor-analytic studies.
Cambridge University Press.

Cattell, R. B. (1971). Abilities: Their structure, growth, and action. Boston: Houghton
Mifflin.

Chai, L. R., Khambhati, A. N., Ciric, R., Moore, T. M., Gur, R. C., Gur, R. E., . . .
Bassett, D. S. (2017). Evolution of brain network dynamics in neurodevelop-
ment. Network Neuroscience, 1(1), 14–30.

Christoff, K., Irving, Z. C., Fox, K. C., Spreng, R. N., & Andrews-Hanna, J. R.
(2016). Mind-wandering as spontaneous thought: A dynamic framework.
Nature Reviews Neuroscience, 17, 718–731.

Clark, A. (2013). Whatever next? Predictive brains, situated agents, and the future of
cognitive science. Behavioral and Brain Sciences, 36(3), 181–204.

Cohen, J. R., & D’Esposito, M. (2016). The segregation and integration of distinct
brain networks and their relationship to cognition. Journal of Neuroscience,
36, 12083–12094.

Human Intelligence and Network Neuroscience 117

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635462.009
Downloaded from https://www.cambridge.org/core. University of Illinois at Urbana-Champaign Library, on 15 Jun 2021 at 15:23:47, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635462.009
https://www.cambridge.org/core


Cohen, J. R., Gallen, C. L., Jacobs, E. G., Lee, T. G., & D’Esposito, M. (2014).
Quantifying the reconfiguration of intrinsic networks during working
memory. PLoS One, 9, e106636.

Cole, M. W., Ito, T., & Braver, T. S. (2015). Lateral prefrontal cortex contributes to
fluid intelligence through multinetwork connectivity. Brain Connectivity, 5(8),
497–504.

Cole, M. W., Reynolds, J. R., Power, J. D., Repovs, G., Anticevic, A., & Braver, T. S.
(2013). Multi-task connectivity reveals flexible hubs for adaptive task control.
Nature Neuroscience, 16(9), 1348–1355.

Cole, M. W., Yarkoni, T., Repovs, G., Anticevic, A., & Braver, T. S. (2012). Global
connectivity of prefrontal cortex predicts cognitive control and intelligence.
Journal of Neuroscience, 32(26), 8988– 8999.

Deco, G., & Corbetta, M. (2011). The dynamical balance of the brain at rest.
Neuroscientist, 17(1), 107–123.

Deco, G., Jirsa, V. K., & McIntosh, A. R. (2013). Resting brains never rest:
Computational insights into potential cognitive architectures. Trends in
Neurosciences, 36(5), 268–274.

Deco, G., Tononi, G., Boly, M., & Kringelbach, M. L. (2015). Rethinking segregation
and integration: Contributions of whole-brain modelling. Nature Reviews
Neuroscience, 16, 430–439.

Dosenbach, N. U., Fair, D. A., Cohen, A. L., Schlaggar, B. L., & Petersen, S. E.
(2008). A dual-networks architecture of top-down control. Trends in
Cognitive Sciences, 12(3), 99–105.

Duncan, J. (2010). The multiple-demand (MD) system of the primate brain: Mental
programs for intelligent behaviour. Trends in Cognitive Sciences, 14(4),
172–179.

Duncan, J., Chylinski, D., Mitchell, D. J., & Bhandari, A. (2017). Complexity and
compositionality in fluid intelligence. Proceedings of the National Academy of
Sciences USA, 114(20), 5295–5299.

Duncan, J., &Owen, A.M. (2000). Common regions of the human frontal lobe recruited
by diverse cognitive demands. Trends in Neurosciences, 23(10), 475–483.

Duncan, J., Seitz, R. J., Kolodny, J., Bor, D., Herzog, H., Ahmed, A., . . . Emslie, H.
(2000). A neural basis for general intelligence. Science, 289(5478), 457–460.

Eguiluz, V. M., Chialvo, D. R., Cecchi, G. A., Baliki, M., & Apkarian, A. V. (2005).
Scale-free brain functional networks. Physical Review Letters, 94, 018102.

Finc, K., Bonna, K., He, X., Lydon-Staley, D. M., Kuhn, S., Duch, W., & Bassett,
D. S. (2020). Dynamic reconfiguration of functional brain networks during
working memory training. Nature Communications, 11, 2435.

Friedman, N. P., & Miyake, A. (2017). Unity and diversity of executive functions:
Individual differences as a window on cognitive structure. Cortex, 86,
186–204.

Friston, K. (2010). The free-energy principle: A unified brain theory? Nature Reviews
Neuroscience, 11, 127–138.

Gallos, L. K., Makse, H. A., & Sigman, M. (2012). A small world of weak ties provides
optimal global integration of self-similar modules in functional brain net-
works. Proceedings of the National Academy of Sciences USA, 109(8),
2825–2830.

118 a. k. barbey

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635462.009
Downloaded from https://www.cambridge.org/core. University of Illinois at Urbana-Champaign Library, on 15 Jun 2021 at 15:23:47, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635462.009
https://www.cambridge.org/core


Girn, M., Mills, C., & Christoff, K. (2019). Linking brain network reconfiguration and
intelligence: Are we there yet? Trends in Neuroscience and Education, 15,
62–70.

Glascher, J., Rudrauf, D., Colom, R., Paul, L. K., Tranel, D., Damasio, H., &
Adolphs, R. (2010). Distributed neural system for general intelligence
revealed by lesion mapping. Proceedings of the National Academy of
Sciences USA, 107(10), 4705–4709.

Gordon, E. M., Stollstorff, M., & Vaidya, C. J. (2012). Using spatial multiple regres-
sion to identify intrinsic connectivity networks involved in working memory
performance. Human Brain Mapping, 33(7), 1536–1552.

Granovetter, M. S. (1973). The strength of weak ties. American Journal of Sociology,
78(6), 1360–1380.

Greene, A. S., Gao, S., Scheinost, D., & Constable, R. T. (2018). Task-induced brain
state manipulation improves prediction of individual traits. Nature
Communications, 9, 2807.

Gu, S., Pasqualetti, F., Cieslak, M., Telesford, Q. K., Yu, A. B., Kahn, A. E., . . .
Bassett, D. S. (2015). Controllability of structural brain networks. Nature
Communications, 6, 8414.

Guimera, R., & Nunes Amaral, L. A. (2005). Functional cartography of complex
metabolic networks. Nature, 433, 895–900.

Hagmann, P., Kurant, M., Gigandet, X., Thiran, P., Wedeen, V. J., Meuli, R., &
Thiran, J. P. (2007). Mapping human whole-brain structural networks with
diffusion MRI. PLoS One, 2, e597.

Haier, R. J., 2017. The neuroscience of intelligence. Cambridge University Press.
Haier, R. J., Siegel, B. V., Nuechterlein, K. H., Hazlett, E., Wu, J. C., Paek, J., . . .

Buchsbaum, M. S. (1988). Cortical glucose metabolic-rate correlates of
abstract reasoning and attention studied with positron emission tomography.
Intelligence, 12(2), 199–217.

Hampshire, A., Highfield, R. R., Parkin, B. L., & Owen, A. M. (2012). Fractionating
human intelligence. Neuron, 76(6), 1225–1237.

He, Y., Chen, Z. J., & Evans, A. C. (2007). Small-world anatomical networks in the
human brain revealed by cortical thickness from MRI. Cerebral Cortex,
17(10), 2407–2419.

Hilger, K., Ekman, M., Fiebach, C. J., & Basten, U. (2017a). Efficient hubs in the
intelligent brain: Nodal efficiency of hub regions in the salience network is
associated with general intelligence. Intelligence, 60, 10–25.

Hilger, K., Ekman, M., Fiebach, C. J., & Basten, U. (2017b). Intelligence is associated
with the modular structure of intrinsic brain networks. Science Reports, 7(1),
16088.

Hilger, K., Fukushima, M., Sporns, O., & Fiebach, C. J. (2020). Temporal stability of
functional brain modules associated with human intelligence. Human Brain
Mapping, 41(2), 362–372.

Jia, H., Hu, X., & Deshpande, G. (2014). Behavioral relevance of the dynamics of the
functional brain connectome. Brain Connectivity, 4(9), 741–759.

Jung, R. E., & Haier, R. J. (2007). The Parieto-Frontal Integration Theory (P-FIT) of
intelligence: Converging neuroimaging evidence. Behavioral and Brain
Sciences, 30(2), 135–154; discussion 154–187.

Human Intelligence and Network Neuroscience 119

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635462.009
Downloaded from https://www.cambridge.org/core. University of Illinois at Urbana-Champaign Library, on 15 Jun 2021 at 15:23:47, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635462.009
https://www.cambridge.org/core


Kovacs, K., & Conway, A. R. A. (2016). Process overlap theory: A unified account of
the general factor of intelligence. Psychological Inquiry, 27(3), 151–177.

Kruschwitz, J., Waller, L., Daedelow, L., Walter, H., & Veer, I. (2018). General,
crystallized and fluid intelligence are not associated with functional global
network efficiency: A replication study with the human connectome project
1200 data set. Neuroimage, 171, 323–331.

Kucyi, A. (2018). Just a thought: How mind-wandering is represented in dynamic
brain connectivity. Neuroimage, 180(Pt B), 505–514.

Langer, N., Pedroni, A., Gianotti, L. R., Hänggi, J., Knoch, D., & Jäncke, L. (2012).
Functional brain network efficiency predicts intelligence. Human Brain
Mapping, 33(6), 1393–1406.

Langer, N., Pedroni, A., & Jancke, L. (2013). The problem of thresholding in small-
world network analysis. PLoS One, 8, e53199.

Latora, V., & Marchiori, M. (2001). Efficient behavior of small-world networks.
Physical Review Letters, 87(19), 198701.

Liang, X., Zou, Q., He, Y., & Yang, Y. (2016). Topologically reorganized connectivity
architecture of default-mode, executive-control, and salience networks across
working memory task loads. Cerebral Cortex, 26(4), 1501–1511.

Mattar, M. G., Betzel, R. F., & Bassett, D. S. (2016). The flexible brain. Brain, 139(8),
2110–2112.

McGrew, K. S., & Wendling, B. J. (2010). Cattell-Horn-Carroll cognitive-achievement
relations: What we have learned from the past 20 years of research.
Psychology in the Schools, 47(7), 651–675.

Meunier, D., Lambiotte, R., & Bullmore, E. T. (2010). Modular and hierarchically
modular organization of brain networks. Frontiers in Neuroscience, 4, 200.

Mill, R. D., Ito, T., & Cole, M. W. (2017). From connectome to cognition: The search
for mechanism in human functional brain networks. Neuroimage, 160,
124–139.

Park, H. J., & Friston, K. (2013). Structural and functional brain networks: From
connections to cognition. Science, 342(6158), 1238411.

Pascual-Leone, A., Amedi, A., Fregni, F., & Merabet, L. B. (2005). The plastic human
brain cortex. Annual Review of Neuroscience, 28, 377–401.

Petermann, T., Thiagarajan, T. C., Lebedev, M. A., Nicolelis, M. A., Chialvo, D. R.,
& Plenz, D. (2009). Spontaneous cortical activity in awake monkeys com-
posed of neuronal avalanches. Proceedings of the National Academy of
Sciences USA, 106(37), 15921–15926.

Posner, M. I., & Barbey, A. K. (2020). General intelligence in the age of neuroimaging.
Trends in Neuroscience and Education, 18, 100126.

Power, J. D., Cohen, A. L., Nelson, S. M., Wig, G. S., Barnes, K. A., Church, J. A., . . .
Petersen, S. E. (2011). Functional network organization of the human brain.
Neuron, 72(4), 665–678.

Power, J. D., & Petersen, S. E. (2013). Control-related systems in the human brain.
Current Opinion in Neurobiology, 23(2), 223–228.

Power, J. D., Schlaggar, B. L., Lessov-Schlaggar, C. N., & Petersen, S. E. (2013).
Evidence for hubs in human functional brain networks. Neuron, 79(4),
798–813.

120 a. k. barbey

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635462.009
Downloaded from https://www.cambridge.org/core. University of Illinois at Urbana-Champaign Library, on 15 Jun 2021 at 15:23:47, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635462.009
https://www.cambridge.org/core


Ramón y Cajal, S., Pasik, P., & Pasik, T. (1999). Texture of the nervous system of man
and the vertebrates. Wien: Springer.

Robinson, P. A., Henderson, J. A., Matar, E., Riley, P., & Gray, R. T. (2009).
Dynamical reconnection and stability constraints on cortical network archi-
tecture. Physical Review Letters, 103, 108104.

Santarnecchi, E., Galli, G., Polizzotto, N. R., Rossi, A., & Rossi, S. (2014). Efficiency
of weak brain connections support general cognitive functioning. Human
Brain Mapping, 35(9), 4566–4582.

Schneidman, E., Berry, M. J., 2nd, Segev, R., & Bialek, W. (2006). Weak pairwise
correlations imply strongly correlated network states in a neural population.
Nature, 440, 1007–1012.

Schultz, D. H., & Cole, M. W. (2016). Higher intelligence is associated with less task-
related brain network reconfiguration. Journal of Neuroscience, 36(33),
8551–8561.

Shine, J. M., Bissett, P. G., Bell, P. T., Koyejo, O., Balsters, J. H., Gorgolewski,
K. J., . . . Poldrack, R. A. (2016). The dynamics of functional brain networks:
Integrated network states during cognitive task performance. Neuron, 92(2),
544–554.

Simon, H. (1962). The architecture of complexity. Proceedings of the American
Philosophical Society, 106(6), 467–482.

Smith, S. M., Beckmann, C. F., Andersson, J., Auerbach, E. J., Bijsterbosch, J.,
Douaud, G., . . . WU-Minn HCP Consortium (2013). Resting-state fMRI in
the Human Connectome Project. Neuroimage, 80, 144–168.

Song, M., Zhou, Y., Li, J., Liu, Y., Tian, L., Yu, C., & Jiang, T. (2008). Brain
spontaneous functional connectivity and intelligence. Neuroimage, 41(3),
1168–1176.

Sporns, O., Chialvo, D. R., Kaiser, M., & Hilgetag, C. C. (2004). Organization,
development and function of complex brain networks. Trends in Cognitive
Sciences, 8(9), 418–425.

Sporns, O., Tononi, G., & Edelman, G. M. (2000a). Connectivity and complexity: The
relationship between neuroanatomy and brain dynamics. Neural Networks,
13(8–9), 909–922.

Sporns, O., Tononi, G., & Edelman, G. M. (2000b). Theoretical neuroanatomy:
Relating anatomical and functional connectivity in graphs and cortical con-
nection matrices. Cerebral Cortex, 10(2), 127–141.

St Jacques, P. L., Kragel, P. A., & Rubin, D. C. (2011). Dynamic neural networks
supporting memory retrieval. Neuroimage, 57(2), 608–616.

Stam, C. J. (2014). Modern network science of neurological disorders. Nature Reviews
Neuroscience, 15, 683–695.

Stam, C. J., Jones, B. F., Nolte, G., Breakspear, M., & Scheltens, P. (2007). Small-
world networks and functional connectivity in Alzheimer’s disease. Cerebral
Cortex, 17(1), 92–99.

van den Heuvel, M. P., Mandl, R. C., Kahn, R. S., & Hulshoff Pol, H. E. (2009).
Functionally linked resting-state networks reflect the underlying structural
connectivity architecture of the human brain. Human Brain Mapping, 30(10),
3127–3141.

Human Intelligence and Network Neuroscience 121

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635462.009
Downloaded from https://www.cambridge.org/core. University of Illinois at Urbana-Champaign Library, on 15 Jun 2021 at 15:23:47, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635462.009
https://www.cambridge.org/core


van den Heuvel, M. P., & Sporns, O. (2011). Rich-club organization of the human
connectome. Journal of Neuroscience, 31(44), 15775–15786.

van den Heuvel, M. P., & Sporns, O. (2013). Network hubs in the human brain. Trends
in Cognitive Sciences, 17(12), 683–696.

van den Heuvel, M. P., Stam, C. J., Kahn, R. S., & Hulshoff Pol, H. E. (2009).
Efficiency of functional brain networks and intellectual performance.
Journal of Neuroscience, 29(23), 7619–7624.

van der Maas, H. L., Dolan, C. V., Grasman, R. P., Wicherts, J. M., Huizenga, H. M.,
& Raijmakers, M. E. (2006). A dynamical model of general intelligence: The
positive manifold of intelligence by mutualism. Psychological Review, 113(4),
842–861.

Watts, D. J., & Strogatz, S. H. (1998). Collective dynamics of “small-world” networks.
Nature, 393, 440–442.

Wirth, M., Jann, K., Dierks, T., Federspiel, A., Wiest, R., & Horn, H. (2011).
Semantic memory involvement in the default mode network: A functional
neuroimaging study using independent component analysis. Neuroimage,
54(4), 3057–3066.

Xiao, L., Stephen, J. M., Wilson, T. W., Calhoun, V. D., & Wang, Y. P. (2019).
Alternating diffusion map based fusion of multimodal brain connectivity
networks for IQ prediction. IEEE Transactions of Biomedical Engineering,
66(8), 2140–2151.

Zalesky, A., Fornito, A., Cocchi, L., Gollo, L. L., & Breakspear, M. (2014). Time-
resolved resting-state brain networks. Proceedings of the National Academy of
Sciences USA, 111(28), 10341–10346.

Zhang, J., Cheng, W., Liu, Z., Zhang, K., Lei, X., Yao, Y., . . . Feng, J. (2016). Neural,
electrophysiological and anatomical basis of brain-network variability and its
characteristic changes in mental disorders. Brain, 139(8), 2307–2321.

Zuo, X. N., He, Y., Betzel, R. F., Colcombe, S., Sporns, O., & Milham, M. P. (2017).
Human connectomics across the life span. Trends in Cognitive Sciences, 21(1),
32–45.

122 a. k. barbey

of use, available at https://www.cambridge.org/core/terms. https://doi.org/10.1017/9781108635462.009
Downloaded from https://www.cambridge.org/core. University of Illinois at Urbana-Champaign Library, on 15 Jun 2021 at 15:23:47, subject to the Cambridge Core terms

https://www.cambridge.org/core/terms
https://doi.org/10.1017/9781108635462.009
https://www.cambridge.org/core

