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Network neuroscience research into intelligence has em-
phasized two primary neurobiological mechanisms that un-
derlie cognitive ability: the flexible, dynamic integration
of multiple brain networks during information processing,
and the topology and connectivity of highly-connected hub
nodes that drive or coordinate network reconfiguration. Sev-
eral cognitive neuroscience theories of intelligence appeal
to these properties when drawing on neuroscience evidence
to explain individual differences in cognitive ability. In
this chapter, we review cognitive neuroscience hypotheses
and theories of human intelligence—including neural speed
and neural efficiency hypotheses, the Parieto-Frontal Integra-
tion Theory and Multiple Demand Theory, Process Overlap
Theory and Network Sampling Theory, predictive process-
ing models, the Watershed Model, and the Network Neuro-
science Theory. While these theories each draw on a well-
established body of neuroscience evidence, they are also
each tied to the research methods and techniques that gave
rise to them—complicating efforts to compare their claims
and predictions. In reviewing the neuroscience evidence for
current neuroscience theories, we discuss the methodologi-
cal challenges of studying general intelligence with neuro-
science data, identify the particularly promising strengths of
network sampling- and topology- based theories of intelli-
gence, and finally, raise several key questions for future re-
search into intelligence and cognitive ability to address.

Introduction

Neuroscience research demonstrates that the human brain
is a complex network, structured to provide both the
widespread global integration and specialized regional con-
nectivity that support general and specific cognitive abili-
ties. The development and maintenance of cognitive abili-
ties appear to emerge from the remarkably dynamic nature
of the brain—both the slower adaptation of structural con-
nections during learning, and the faster functional reconfig-
uration of brain networks while performing functional tasks.
This network-based perspective has become highly influen-
tial in cognitive neuroscience, motivating a wealth of models
and formal theories which associate individual differences in
the psychological structure of human intelligence with un-
derlying neurobiological networks.

In this chapter, we provide an overview of the exciting
current research into cognitive neuroscience theories of in-
telligence. We begin with an overview of psychology re-

search into intelligence, highlighting the recent emergence
of psychology theories that approach cognitive ability from
a network perspective. We then enter a discussion of gen-
eral neuroscience accounts of intelligence, including the mi-
tochondrial efficiency, neural speed, and neural efficiency hy-
potheses. Next, we discuss the early development of brain
network models, focusing on the Parieto-Frontal Integration
Theory and Multiple Demand Theory. We then transition
to more recent models that sample intelligence from multi-
ple brain networks, including Process Overlap Theory and
Network Sampling Theory. Finally we discuss the most dy-
namic models of intelligence, covering predictive process-
ing models, the Watershed Model of fluid intelligence, and
the Network Neuroscience Theory. Along the way, we high-
light the relationship between development in neuroscience
methods and theories of intelligence, and point to the particu-
larly promising strengths of network-based theories of intel-
ligence. We conclude by summarizing current issues, chal-
lenges, and future directions for the field as a whole, out-
lining several questions for future applications for network
neuroscience research into the study of intelligence research
to address.

What are Brain Networks?

The field of Network Neuroscience (D. S. Bassett and
Sporns, 2017) proposes to study the structure and function
of the brain by interrogating the architecture and topology
of brain networks. Networks are emergent phenomena that
characterize the complex behavior of many real world sys-
tems (M. Newman, 2003). The dominant research paradigm
used in cognitive neuroscience to image brain network topol-
ogy (e.g., see Yeo et al., 2011) is functional Magnetic Reso-
nance Imaging (fMRI; Davis and Poldrack, 2013; Poldrack,
2008), which localises changes in blood flow to specific re-
gions in the brain to produce a mathematical graph of syn-
chronous brain network connectivity, known as the connec-
tome (Sporns, 2011). Several other structural and functional
neuroimaging modalities can also be used to generate con-
nectivity data. Researchers represent networks of brain con-
nectivity data using a graph G = (V, E) (see M. E. J. New-
man, 2010 for an introduction), such that regions in the brain
are represented by V , a set of vertices, and ordered pairs of
either directed or undirected edges E represent connectiv-
ity between those brain regions. Many real-world systems
can be characterized using networks to highlight important
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organizational properties, which has helped to facilitate the
widespread adoption network science as an interdisciplinary
field (Mitchell, 2009). In cognitive neuroscience, key net-
work properties (Medaglia et al., 2015) that have inspired
research and theory into human intelligence include the de-
gree distribution of node connectivity (van den Heuvel and
Sporns, 2013) and small-world properties (D. S. Bassett and
E. Bullmore, 2006; D. S. Bassett and E. T. Bullmore, 2017).
Connectivity data show that long-range connections (van den
Heuvel et al., 2012) across the brain are facilitated by a rich-
club (van den Heuvel and Sporns, 2011) of densely intercon-
nected hub regions, that enabling fast and efficient (Langer et
al., 2012) connectivity between disparate, specialized brain
regions. Research into the features of brain network topology
that support these moment-to-moment changes in network
connectivity profiles (Avena-Koenigsberger et al., 2019; Gu
et al., 2015; Senden et al., 2014; Shine et al., 2016; Vázquez-
Rodríguez et al., 2017), often termed network reconfigura-
tions, highlight that the brain is an inherently dynamic sys-
tem (Sporns et al., 2000a), where communication between
brain networks depends on controlling activity in the connec-
tome through a series of functional states (Srivastava et al.,
2020). Regions that compose brain networks are known to be
highly overlapped (Schultz and Cole, 2016; Yeo et al., 2014),
such that a single brain region can map to membership in
many possible brain networks, flexibly reconfiguring its con-
nectivity profile to serve different cognitive demands McIn-
tosh, 2000; Pessoa, 2014; Yeo et al., 2014). Neuroscience
research into intelligence increasingly draws on these net-
work perspectives and methods, proposing that the structure
of cognitive abilities and individual differences is directly re-
flected in the underlying organization and topology of brain
networks (Barbey et al., 2014; Betzel and D S Bassett, 2017;
Cole et al., 2014; van den Heuvel et al., 2009), and associ-
ating intelligence with the dynamic reconfigurations of those
brain networks during cognition (e.g., Barbey, 2018; Shine
et al., 2016; Soreq et al., 2021).

Psychometric Theories of Human Intelligence

The fundamental finding in psychometric research into in-
telligence (Spearman, 1904) is Spearman’s observation of the
positive manifold: the invariable and inevitable positive cor-
relation between a subject’s performance across all cognitive
tests. This general factor, g, characterizes the shared variance
common to all cognitive abilities, reflecting that all cogni-
tive tests measure something in common. However, variance
in ability that is unique to particular tests will also exist, as
Spearman reasoned when noting that the correlation between
cognitive abilities was not perfect (for example, on a test of
French language versus a test of mathematics). Soon there-
after emerged a second key observation: the introduction
of the hierarchical model of cognitive abilities (Spearman,
1904, developed further in Spearman, 1927). This factorial

structure approach to intelligence estimates specific cogni-
tive abilities from observed performance on various cognitive
tests (Thomson, 1951), which then construct a hierarchy of
cognitive abilities. Today, this dominant view of intelligence
is best characterized by Catell-Horn-Carrol theory: a latent
variable g (general intelligence) causes all shared variance
in broad intellectual abilities (e.g., general intelligence, fluid
intelligence, short-term memory), which can each be mea-
sured from specific tests of narrow cognitive abilities (induc-
tive reasoning, perceptual speed, free-recall memory) (Flana-
gan and Dixon, 2014; Schneider and McGrew, 2018). This
consensus remained dominant throughout the 20th century—
and indeed, research continues to identify the positive man-
ifold (e.g., Caemmerer et al., 2020) in all studies conducted
using modern psychometric testing batteries. However, a
critical issue with psychometric research into intelligence re-
mains. Several alternative explanations of the positive man-
ifold exist, beyond the reflective factor model first identified
by Spearman, and in most cases behavioral data alone is not
able to distinguish between these these competing theoretical
explanations. This motivates the the use of neuroscience data
in studying theories of intelligence, ideally to map the neu-
ral substrates and network operations that underpin specific
cognitive abilities (Pessoa, 2014; Varoquaux et al., 2018),
affording empirical tests of the various formal structures of
intelligence proposed by behavioral theories. Relevantly, de-
velopments in psychometric theories of g somewhat mirror
the development of cognitive neuroscience theories of intel-
ligence, reflecting an emerging trend towards formal network
models of human intelligence.

From the early beginnings of the 20th century, alterna-
tive theories of intelligence have adopted a network perspec-
tive, arguing against the consensus model of a reflective fac-
tor structure underlying intelligence, and against the exis-
tence of g. One long-standing perspective against g is the
view that the positive manifold instead emerges from many
overlapping cognitive processes (Bartholomew et al., 2009;
Maxwell, 1972; Thurstone, 1934), a position termed sam-
pling theorem. Instead of associating the positive manifold
with a causal latent factor g, sampling theorem rejects the ex-
istence of a single unifying factor. Network representations
are often employed when appealing to sampling theorem,
either in explaining intelligence as an overlapping network
of cognitive abilities (Hampshire et al., 2012), or explicitly
identifying those networks of cognitive ability with human
brain networks (Kovacs and Conway, 2016; McIntosh, 2000;
Soreq et al., 2021). Other formal models of intelligence,
such as the mutualism model (van der Maas et al., 2006) or
the wiring model (Savi et al., 2019), provide more novel ex-
planations for the structure of intelligence, again grounded
in network representations (Savi et al., 2021). Briefly, we
will give an overview of influential structural models for the
positive manifold, providing context and grounding for the
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remainder of our discussion into cognitive neuroscience the-
ories of intelligence.

Among factor structure models, CHC theory represents
the final synthesis of the general factor g and hierarchical
models of mental ability, reflecting the culmination of al-
most a century of research. Originally proposing a two-factor
model, Spearman, 1927 hypothesized that g reflected a form
of mental capacity for work, represented in individual dif-
ference variance common across all tests of mental ability.
Contrasting views in the factor structure tradition followed,
maintaining the existence of g (Thurstone, 1948) but propos-
ing that it can be decomposed into a larger and larger set of
specific mental abilities. Theorizing began to center on two
primary broad facets of intelligence, fluid intelligence (G f )
and crystallized intelligence (Gc), originating from a bifac-
tor models of intelligence proposed by Hebb, 1949 that was
further developed by Cattell, 1963 (Brown, 2016). Fluid in-
telligence reflects adaptive problem solving skills that are in-
dependent of prior experience or training, and crystallized in-
telligence reflects previously acquired knowledge and skills
(Carroll, 1993; Cattell, 1971; McGrew and Wendling, 2010).
Horn and Cattell, 1966 continued to refine this model, culmi-
nating ultimately in the development of CHC theory (Carroll,
1993; Flanagan and Dixon, 2014; Schneider and McGrew,
2018), where Carroll’s three-stratum factor proposes that g
produces variance across up to 16 broad abilities (e.g., G f ,
Gc, Gq; Schneider and McGrew, 2018) that produce many
more narrow abilities. As we will later discuss in further
detail, neuroscience evidence lends support to a mapping be-
tween hierarchical cognitive abilities and hierarchical brain
network organization (Betzel and D S Bassett, 2017; Meu-
nier et al., 2010; Román et al., 2014), which alongside be-
havioral evidence (Caemmerer et al., 2020) continue to lend
support to the factor modeling perspective.

Following Spearman’s identification of g, G. H. Thomp-
son proposed that intelligence may represent a global net-
work phenomena (Thomson, 1916; Thomson, 1919), orig-
inating research into the sampling theory of intelligence.
Thomson suggested that the positive manifold results from
the overlap of shared cognitive processes, proposing that
each cognitive test necessarily measures more than one cog-
nitive ability at once, producing the overlap in mental pro-
cesses that produces the statistical appearance of the positive
manifold (Thomson, 1951; Thorndike et al., 1926). Sam-
pling models have been revived in recent years, with be-
havioral work (Bartholomew et al., 2013; Jensen, 2006) that
has has applied sampling theory to both domain-specific and
domain-general processes, and also neuroscience evidence
(Kovacs and Conway, 2016; Soreq et al., 2021) of network
network operations both providing evidence to support the
role of network sampling in intelligence.

Most recently, explanations of the positive manifold have
been generated from a fully network perspective (Colom

et al., 2010; van der Maas et al., 2019), accounting for g
through reciprocal interactions between a network of under-
lying cognitive abilities. One such formal network model of
intelligence emerges from mutualism theory (van der Maas
et al., 2006; van der Maas et al., 2019), which proposes
that the positive manifold and the hierarchical structure of
cognitive abilities both emerge from reciprocal exchanges
between elements of an extended network of cognitive pro-
cesses during development (see also Kievit, 2020; Kievit et
al., 2017; Ou et al., 2019; Peng and Kievit, 2020). Mutu-
alism theory accounts for G f and Gc (van Der Maas et al.,
2017) by modeling cognitive abilities as a network, where lo-
cal interactions between elements replace the reflective fac-
tor structure of g as the cause of the internal structure of
cognitive abilities (Kan et al., 2020). In this account, a
mental ability can develop in a somewhat autonomous man-
ner, but will also change or grow due to growth in other
areas, via mutual exchanges. A related theory, the wiring
model (Savi et al., 2019), adopts an entirely dynamic account
of network development. Wired intelligence theory models
individual-specific networks of cognitive ability, accounting
in particular for knowledge acquisition and the development
of crystallized intelligence. In an ensemble, these network
models can formally account for the "Matthew effect" (Mer-
ton, 1968) of divergent developmental outcomes in cognitive
ability, adopting an idiographic perspective (Molenaar, 2004)
to deploy dynamic network models that capture the cognitive
development of single individuals. Wired intelligence may
represent a promising new direction as a formal model for
interdisciplinary research into skill acquisition, particularly
applied to the study of individual differences in cognitive
training (e.g., D. S. Bassett et al., 2011; Daugherty et al.,
2020; Finc et al., 2020; Ree and Earles, 2006; Román et
al., 2019; Román et al., 2017; Zwilling et al., 2019), where
arguments made for transfer and neuroplasticity are closely
aligned with those made for the emergence of g during devel-
opment and education (Ackerman and Lohman, 2003; Nis-
bett et al., 2012).

Unlike factor and sampling approaches to intelligence,
cognitive neuroscience theories of intelligence have yet to
devote empirical effort to directly testing formal network
models of the positive manifold. However, neuroscience re-
search has indirectly argued in favor of the extended devel-
opmental (Byrge et al., 2014) and neurobiological (Barbey,
2018) network interactions that are entailed by formal net-
work models, suggesting that future neuroscience work in
this space may be warranted. Critically, both mutualism and
wiring theory allow for individuals to be formally modeled
by individualized network models, suggesting future inter-
disciplinary research into formal network models of intelli-
gence that could make contact with current cognitive neuro-
science trends towards methods for prediction (e.g., Finn and
Rosenberg, 2021; Gabrieli et al., 2015) and individual differ-
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ences modeling (e.g., Daugherty et al., 2020; Kievit et al.,
2016; McFarland, 2017; Soreq et al., 2021).

Neuroscience Theories of Intelligence

Neuroscience research into human intelligence has ex-
tended our understanding of the structure of the positive man-
ifold by identify neurobiological structures and mechanisms
that underpin cognitive abilities. Building on that research,
network neuroscience has emphasized two primary neurobi-
ological mechanisms that underlie cognitive ability: the flex-
ible, dynamic integration of brain networks during informa-
tion processing (Braun et al., 2015; Cohen and D’Esposito,
2016; Nee, 2021; Ray et al., 2020; Shine et al., 2016; Wang
et al., 2021), and the topology and connectivity of highly-
connected hub nodes (Bertolero et al., 2018; Cole et al.,
2013; Power et al., 2013; Senden et al., 2014; Senden et al.,
2018; van den Heuvel and Sporns, 2013) that drive or coordi-
nate efficient network reconfiguration. Continually updating
neural representations of prior knowledge to account for new
information affords for both the long-term changes to neu-
ral architecture (Byrge et al., 2014; Chai et al., 2017) and
the moment-to-moment neural representation of predictions
(Bubic et al., 2010; Ficco et al., 2021) that facilitate adap-
tive behavior and decision making. Contemporary network
neuroscience research conceives of the brain as an active and
dynamic inference generator, anticipating incoming sensory
inputs and forming hypotheses about that world that can be
tested against incoming sensory signals (Clark, 2013; Fris-
ton, 2010).

Building on previous research that identifies the positive
manifold and the factor structure of intelligence with indi-
vidual brain regions and networks (see Haier, 2017), network
neuroscience theories of intelligence instead propose that in-
dividual differences in intelligence emerge from the global
architecture of brain network topology. The balanced orga-
nization of these networks affords critical dynamics, through
the active generation and reconfiguration of functional net-
work states. This ability to optimally integrate networks to-
gether from disparate regions is critical to producing intelli-
gence, facilitating a process where cognitive operations are
implemented by discrete and specialized functional modules
(e.g., Bertolero et al., 2015), and performing novel tasks re-
quires recruiting those assembling those modules and sub-
networks into an efficient configuration (as in the Multiple
Demand theory; Camilleri et al., 2018), a process afforded by
brain network organization that can balance this competing
needs of local structure and efficient global communication,
perhaps explaining their ubiquitous presence in many real-
world systems, the brain included (D. S. Bassett and E. T.
Bullmore, 2017) and their relationship to intelligence (e.g.,
Langer et al., 2012).

Network neuroscience theories of intelligence can be con-
ceptualized along a spectrum of resolution, from individual

brain networks to global whole-brain properties. Neurobi-
ological localization has proven a successful framework for
the study of many specific cognitive abilities, and a wealth
of existing neuroscience evidence highlights the importance
of specialized brain regions and networks, supporting local-
ist theories of intelligence that primarily ascribe intelligence
to spatially localized neurobiology. Current evidence in net-
work neuroscience (D. S. Bassett and Sporns, 2017) high-
lights the critical role of brain network topology and dynam-
ics in cognitive abilities, suggesting that the architecture and
topology supporting the positive manifold spans the entire
connectome (Dubois et al., 2018; Suprano et al., 2019). A
balance of strong connections supporting efficient functional
integration (Deco et al., 2015; Gallos et al., 2012; Langer et
al., 2012) and weak connection supporting functional segre-
gation (Bertolero et al., 2018; Bertolero et al., 2015; Gallos et
al., 2012) produce a modular (Hilger et al., 2017) and small-
world (D. S. Bassett and E. Bullmore, 2006; D. S. Bassett
and E. T. Bullmore, 2017) neural architecture, enabling the
dynamic and flexible reorganization of brain activity during
cognition. The critical role of global network flexibility in
higher cognition identified by network neuroscience (D. S.
Bassett et al., 2011; Braun et al., 2015; Cabral et al., 2017;
Finc et al., 2020; Shine et al., 2016) suggests that perspective
which localize intelligence to single regions and networks
may fail to account for the systemwide neural properties that
underpin individual differences in intelligence.

While cognitive neuroscience theories of intelligence each
draw from a well-established body of neuroscience, they are
also each tied to the research methods and techniques that
gave rise to them—–somewhat complicating efforts to com-
pare their claims and predictions.

General Neuroscience Theories of Intelligence

The dependency between research methods and theories
of intelligence can be illustrated with a brief survey of non-
fMRI neuroscience accounts of the biological basis of g.
Drawing on distinct modalities of research—event-related
potentials (ERPs; Woodman, 2010), positron emission to-
mography (PET; Lameka et al., 2016), and interdisciplinary
neuroscience—theorists have arrived at explanations for g at
levels of resolution that are difficult to directly reconcile with
cognitive neuroscience data, or with the formal psychomet-
ric accounts of the positive manifold. Briefly, we discuss the
cellular efficiency, neural speed, and neural efficiency the-
ories motivated by these research modalities, each of which
reduce the underlying g to a single underlying cause or mech-
anism. These theories may each be noteworthy to cognitive
neuroscientists for their orthogonal research methodologies
taken to accounting for g, and for the illustrative difficulties
inherent in reconciling their evidence with current cognitive
neuroscience theories.

The efficiency of mitochondrial functioning (Geary, 2018;
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Geary, 2019) has recently been proposed as a novel mech-
anism that accounts for intelligence, prompting a diversity
(Geary, 2020) commentary and critique from intelligence re-
searchers. The theory shares similarities with previous ef-
forts (see Matzel et al., 2020) to effectively reduce (P. M.
Churchland and P. S. Churchland, 1992) differences in g to
a lower-level biological mechanism—in this case, by postu-
lating that the functioning of brain systems at all levels of
resolution depends on the health and energy production of
cellular mitochondria. One potential merit of explanations
for the positive manifold pitched at a biological level is their
potential to make more direct contact with theories (Dickens
and Flynn, 2001) and data (Tucker-Drob and Bates, 2016)
on the genetic heritability of intelligence, although as many
commentators note (Matzel et al., 2020; Savi et al., 2020;
Stankov, 2020; Sternberg, 2020), mitochondrial efficiency
is purely correlational, with hypothesis-driven testing yet to
be done. However, research into the molecular genetics of
intelligence (for a review, see Deary et al., 2021) has be-
gun to make some general, if modest, progress towards as-
sociating the heritabilitiy of intelligence with cognitive traits
and neuroimaging data, although mechanisms for these cor-
relational associations are currently lacking. While the Wa-
tershed Model and Network Neuroscience Theory (see be-
low; Barbey, 2018; Kievit et al., 2016) are at least consistent
with genetic explanations for the heritability of intelligence,
cognitive neuroscience has yet to make any significant con-
tact with genetics research, arguably due to the mismatch in
methods and perspectives adopted by their respective fields.
Regardless, multidisciplinary approaches to formally model
the positive manifold that merge cognitive neuroscience, psy-
chometrics, and systems biology may yet emerge during the
21st century.

A more established neuroscience account of g, neural
speed, emerges from research using EEG (Schubert et al.,
2017; Schubert et al., 2019, also see Jensen, 2006). One
of the most well-replicated findings in the field is the nega-
tive association between intelligence and reactions time (Der
and Deary, 2017), which can be measured with moderate
success from the latencies of ERP components. Research
in this area is recently transitioning to a focus on more nar-
rowly defined cognitive tasks and operations—to great suc-
cess, with a model of ERP waves able to account for 90%
(Schubert et al., 2017) of variance in general intelligence,
markedly higher than the 20% (Dubois et al., 2018) to 40%
(Feilong et al., 2021) of variance currently accounted for
by cognitive neuroscience methods. However, conventional
ERP evidence necessarily lacks spatial localization, where
as MRI evidence lacks temporal specificity. The differing
lingua franca of these respective methodologies complicate
any attempts to formally integrate ERP data on neural speed
with cognitive neuroscience methods, short of performing si-
multaneous recording (Kruggel et al., 2000; Moore et al.,

2021; Scrivener, 2021) via MRI-EEG, highlighting the close
bond between research method and theoretical perspective
that current theories of intelligence remain subject to.

A final influential view is the neural efficiency hypothesis
(Haier et al., 1988; Neubauer and Fink, 2009), which pri-
marily associates intelligence with glucose metabolism effi-
ciency (perhaps here making some contact with mitochon-
drial functioning), based on support from a variety of PET,
EEG (Nussbaumer et al., 2015), fMRI (Dunst et al., 2014),
and diffusion (Genç et al., 2018) studies. However, current
formulations of neural efficiency are somewhat imprecisely
defined, and in some cases fall prey to the well-understood
problem in cognitive neuroscience of redescribing neural ac-
tivation as "efficiency" (Poldrack, 2015), complicating efforts
to translate these various findings into a formal mechanis-
tic explanation of g that makes contact with conception of
network efficiency (e.g., Langer et al., 2012; Santarnecchi
et al., 2017b; Schultz and Cole, 2016) that has been well-
studied in cognitive neuroscience. Overall, neural and bi-
ological accounts of the positive manifold make intriguing
claims about the underlying nature of g. These accounts
can successfully explain various modality-specific phenom-
ena, suggesting, at the least, that the empirical findings and
open questions posited by their frameworks may important
for any comprehensive theoretical account of the cognitive
neuroscience of intelligence to address.

Cognitive Neuroscience Theories of Intelligence

Neuroimaging studies of the cognitive neuroscience of in-
telligence have explained individual differences in the posi-
tive manifold by appealing to the structure and topology of
brain networks. At a more localized level of resolution, sev-
eral cognitive neuroscience theories have proposed that in-
telligence emerges from the connectivity of specialized neu-
robiological substrates, both at the level of individual brain
regions and brain networks. Early studies investigating the
neurobiology of g implicated the lateral prefrontal cortex
(PFC; Duncan and Owen, 2000; Duncan et al., 2000), mo-
tivating an influential theory based on the role of this re-
gion in cognitive control of functions for intelligent behav-
ior (Barbey et al., 2013b). Lateral PFC theory predicts that
intelligence depends primarily on functional activity within
frontoparietal regions. Current research continues to support
the key role of PFC in many functional tasks, demonstrating
granular functional specialization of neural substrates within
the region (Gilbert et al., 2010; Kamigaki, 2019; Yamasaki
et al., 2002) and emphasizing its important role as a special-
ized region important to cognitive abilities. However, efforts
to examine the neurobiology of intelligence through a wider
lens led to the development of cognitive neuroscience Theo-
ries of Intelligence, accounting for individual differences in
g in terms of the function and topology of broadly distributed
brain networks.
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The landmark Parieto-Frontal integration theory (P-FIT;
Jung and Haier, 2007) predicts that intelligence emerges
from integrated neural activity within the frontoparietal net-
work. A central feature of the P-FIT model is an emphasis on
the integration of knowledge between an integrated network
of frontal and parietal cortex (along with anterior cingulate,
temporal, and occipital cortical areas), afforded by white-
matter fiber tracks that enable efficient communication in the
service of problem-solving and hypothesis testing. A wealth
of neuroimaging evidence exists for the importance of a pre-
frontal network in facilitating human intelligence (Barbey et
al., 2014; Barbey et al., 2012; Barbey et al., 2013b; Braun et
al., 2015; Cole et al., 2012; Daugherty et al., 2020; Duncan
and Owen, 2000; Duncan et al., 2000; Gilbert et al., 2010;
Gläscher et al., 2010; Jung and Haier, 2007; Kamigaki, 2019;
Pineda-Pardo et al., 2016; Yamasaki et al., 2002), suggesting
that the frontoparietal network serves a key role across may
problem-solving contexts, responsible for displaying a gen-
eral profile of task-based activation across a variety of cogni-
tive operations (Cole et al., 2014; Cole et al., 2013; Vakhtin
et al., 2014).

Evidence to support this general role of the frontoparietal
network in a broad range of problem-solving tasks helped
motivate the Multiple Demand (MD) Theory, which pro-
poses that the Multiple Demand network underlies atten-
tional control mechanisms for goal-directed problem-solving
(Camilleri et al., 2018; Duncan, 2010), recruiting from a
core set of regions in midcingulate cortex, bilateral ante-
rior insula, inferior frontal junction and gyrus, right mid-
dle frontal gyrus, and right inferior parietal cortex and in-
traparietal sulcus. MD theory accounts for intelligence and
problem-solving using a flexible network of frontoparietal
and cingulo-opercular regions (Camilleri et al., 2018; Di-
achek et al., 2020; Fedorenko et al., 2013). While many fron-
toparietal connections are also entailed by Multiple Demand
system, the network includes additional vertices central in
attentional networks (Mineroff et al., 2018) and cingulo-
opercular systems (Camilleri et al., 2018). reflects the in-
clusion frontopareital systems with a second, relatively dis-
sociable (Crittenden et al., 2016) cingulo-opercular system.
With the functional recruitment of the the frontoparietal sys-
tem serving a more general processing role for a broad set of
cognitive abilities, connectivity in the cingulo-opercular sys-
tem codes for more differentiable cognitive operations, possi-
bly representing more individualized and topologically local
activation patterns, compared to the more globally recruited
architecture present in the frontoparietal system.

Current research lends broad support for the importance
of the frontoparietal network, with two recent meta-analyses
(Basten et al., 2015; Santarnecchi et al., 2017a) highlighting
the convergence of neuroimaging evidence in support of the
P-FIT theory. However, parsing the extent to which network
patterns of functional connectivity map to a specific theory

can be challenging, as the regional definition of each theory
are nested and somewhat overlapping. Further, the progres-
sion of neuroimaging research methods in the intervening
decade has complicated the methodology of comparing older
neuroscience studies with more recent theories, for example
with P-FIT formulated at the resolution of Broadmann ar-
eas, while current neuroimaging studies afford much a higher
topological resolution. It also remains unclear to what extent
current research into dynamic patterns of functional connec-
tivity (Shine et al., 2016), or the mesoscale topology of net-
works that supports global dynamic connectivity (D. S. Bas-
sett et al., 2013; Elliott et al., 2020), can be mapped onto
these localist theories. Together, these mapping problems
may suggest a mismatch between the original neuroscience
methods and perspectives that provide support for localist
network theories, and more global and dynamic perspective
deployed in more recent network neuroscience studies.

Network Sampling Theories of Intelligence

More recently, the revival of the sampling theory of intel-
ligence (Thomson, 1916; Thorndike et al., 1926) has inspired
a new thrust of theoretical and empirical neuroscience work,
associating intelligence and cognition with the integration
and overlap of processing across multiple brain networks.
Process Overlap theory (Kovacs and Conway, 2016) predicts
that intelligence emerges from the functional integration of
several task-relevant brain regions and networks. Process
Overlap theory accounts for intelligence as the spatial and
functional overlap of brain networks to facilitate overlapping
cognitive processes (Kovacs and Conway, 2016), building on
evidence for the central role of the frontoparietal network in
general and fluid intelligence (Barbey et al., 2014; Jung and
Haier, 2007) to suggest that overlapping cognitive abilities
are instantiated by the overlap of functional brain networks
(e.g., see Meunier et al., 2010; Román et al., 2014). While in
main a psychometric theory, Process Overlap theory draws
support from consistent patterns across several neuroscience
findings, aligning with neuroimaging evidence for localized
frontoparietal hubs (Barbey et al., 2013b), dedicated sys-
tems for executive function and cognitive control (Niendam
et al., 2012), global prefrontal cortex connectivity (Cole et
al., 2012), and the importance of globally efficient functional
connectivity (E. Bullmore and Sporns, 2012; Santarnecchi
et al., 2014). Process Overlap argues that the overlap in cog-
nitive abilities which produces the positive manifold results
from an overlap in functional brain networks, such that the
overlap of cognitive processes proposed by the theory is re-
flected directly in the joint functional activation of overlap-
ping brain networks.

Previous research suggests that intrinsic functional pat-
terns observed in resting state data constrain and shape task-
evoked functional states (Bolt et al., 2017)—and further, that
the degree of functional reconfiguration required between



COGNITIVE NEUROSCIENCE THEORIES OF INTELLIGENCE 7

resting and task-based connectivity is lower for individuals
with higher intelligence (Schultz and Cole, 2016). Recent
neuroimaging evidence (Soreq et al., 2021) has built on these
findings, and on the sampling theory of psychometric g, to
propose the Network Sampling Theory. Using functional
neuroimaging data, Soreq et al., 2021 demonstrate that task-
evoked functional network states can accurately classify cog-
nitive states during a battery of psychometric tasks, suggest-
ing that high-dimensional network sampling operations may
support flexible network reconfiguration across a diverse set
of cognitive tasks. This perspective aligns closely with the
neuroscience and psychometric predictions of Process Over-
lap theory, and also aligns with the network dynamics per-
spective of Network Neuroscience Theory, where greater
fluid abilities depend on increasingly complex and difficult-
to-reach network states. Particularly for high-performing in-
dividuals, Soreq et al., 2021 find that multivariate network
states that reflect underlying cognitive operations can be ac-
curately classified, and that more complex cognitive opera-
tions are associated with greater network complexity. Over-
all, these evidence suggest that that cognitive faculties relate
to the way in which the brain expresses these task-optimal
network states. Intriguingly, the authors suggest that sam-
pling theory provides a possible neurobiological explanation
for factor differentiation (Detterman and Daniel, 1989), the
phenomenon where intelligence explains a greater propor-
tion of variance across tasks for lower-intelligence individu-
als. Higher-intelligence individuals may display more spe-
cific network states, reducing the level of overlap in net-
work sampled across cognitive tasks. This sampling-based
accounts provide an intriguing explanation for the neurobiol-
ogy and dynamics of the positive manifold.

Predictive Processing Model

Predictive Processing (Euler, 2018) has also been recently
proposed as a plausible integrative framework for the neu-
roscience of intelligence. Contemporary network neuro-
science research conceives of the brain as an active and dy-
namic inference generator, anticipating incoming sensory in-
puts and forming hypotheses about that world that can be
tested against incoming sensory signals (Clark, 2013; Fris-
ton, 2010). Predictive Processing builds on this perspective
by integrating it with neuroscience evidence for the impor-
tance of the frontoparietal (Jung and Haier, 2007) and Multi-
ple Demand (Duncan, 2010) networks, by proposing a hier-
archy (Huang and Rao, 2011) of predictive (e.g.,Bubic et al.,
2010; Ficco et al., 2021) representations in the brain, such
that intelligence is the ability to overcome the uncertainty
that emerges when predictions and incoming signals are mis-
matched. This prediction-based perspective aligns with ev-
idence for of a hierarchy of overlapping brain networks re-
flecting the structure of g (Betzel and D S Bassett, 2017;
Román et al., 2014; Soreq et al., 2021), and also maps to

accounts for g based on network dynamics (Barbey, 2018;
van der Maas et al., 2006). However, Predictive Process-
ing goes further than these accounts by proposing that a sin-
gle physiological principle—suppressing prediction errors—
underlies all neurocognitive activity and ability. While neural
mechanisms for top-down prediction error have been identi-
fied (Mayer et al., 2015), evidence from network topology for
the role of prediction in guiding network dynamics is lack-
ing. Though Predictive Processing proposes uncertainty to
be the central mechanism for intelligence, present formula-
tions (Euler, 2018) of the model associate g with a single
primary brain network, potentially at odds with current cog-
nitive neuroscience theories which argue for the importance
of multi-network dynamics or global activity and topology
(e.g., Barbey, 2018; Kievit et al., 2016; Kovacs and Conway,
2016; Soreq et al., 2021).

Watershed Model of Fluid Intelligence

The Watershed Model of fluid intelligence (Kievit et al.,
2016) draws primarily on neuroscience evidence for the role
of microstructural white matter integrity (Lebel and Deoni,
2018; Roberts et al., 2013; Sampaio-Baptista and Johansen-
Berg, 2017) in cognitive ability and development. The Wa-
tershed Model proposes that a hierarchical structure unifies
the directed relationship between white matter integrity and
general intelligence (Penke et al., 2012), where white matter
integrity predicts processing speed (Penke et al., 2010), and
processing speed predicts intelligence (Schubert et al., 2017;
Schubert et al., 2015). As a conceptual framework, the Wa-
tershed Model affords for hierarchical relationships between
lower-level sources of individual variance (e.g., genotypes)
that gradually accumulate to influence individual differences
in intermediate variables (e.g., white matter microstructure,
processing speed), that ultimately produce large individual
differences in the phenotypic outcome of the model (e.g.,
fluid intelligence). Kievit et al., 2016 validate their Water-
shed Model using cross-sectional data, measuring white mat-
ter integrity via tract-specific Fractional Anisotropy values
acquired using Diffusion Tensor Imaging (Fox et al., 2012).
Though Kievit et al., 2016 do not present their theory as
a cognitive neuroscience account, the relationship between
structural brain network topology (Hagmann et al., 2007),
underlying white matter integrity (Frey et al., 2021), and
cognition (Na et al., 2018; Zhai et al., 2020) has lead both
Parieto-Frontal Integration (Jung and Haier, 2007) and Net-
work Neurosience (Barbey, 2018) Theory to make explicit
claims about the importance of underling white matter struc-
ture to cognitive ability, which are broadly supported by in a
wealth of neuroimaging evidence (Barbey et al., 2015; Bar-
bey et al., 2014; Barbey et al., 2013b; Basten et al., 2015;
Byrge et al., 2014; Gläscher et al., 2010; Hilger et al., 2017;
Na et al., 2018; Park and Friston, 2013; Pineda-Pardo et al.,
2016; Román et al., 2017). Watershed models may be easily
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extended to include measures of network structure and topol-
ogy, as the conceptual strengths of the framework may permit
future inclusion of directed relationships between underlying
white matter structure and brain network topology, affording
investigation into the network architecture that underlies in-
telligence. As it stands however, neuroscience data that di-
rectly support the Watershed Model of fluid intelligence are,
as in other models, bound up with the methodologies of a
single imaging modality and conceptual framing.

Network Neuroscience Theory of Intelligence

Recent work in network neuroscience suggests that sys-
temwide brain network topology (Deco et al., 2015; Frey et
al., 2021; Na et al., 2018; Sporns et al., 2000b) and dynam-
ics (Barbey et al., 2015; Cabral et al., 2017; Chai et al., 2017;
Shine et al., 2016; Sporns et al., 2000a) are critical sources
of individual differences in cognitive ability. Aligning with
this perspective, the Network Neuroscience Theory of intel-
ligence (Barbey, 2018) proposes that intelligence results pri-
marily from the flexible and dynamic reconfiguration of brain
networks. The theory argues that network properties support-
ing intelligence are not isolated to specific brain networks
identified by localist neuroscience theories of intelligence—
instead, they are distributed across the entire connectome and
reflected in functional edges that support both integration and
segregation, enabling efficient and flexible dynamics across
the entire connectome. This multi-network description of
the underpinning of intelligence differs fundamentally from
more localist theories, instead proposing that intelligence is
produced by whole-brain, multi-network connectivity and
dynamics, supported by an efficient and modular underlying
architecture.

Network Neuroscience Theory adopts the perspective that
g originates from individual differences in the network topol-
ogy and dynamics of the entire connectome. The theory
emphasizes the mechanistic importance of small-world brain
networks (D. S. Bassett and E. Bullmore, 2006; D. S. Bas-
sett and E. T. Bullmore, 2017) in producing the functional
dynamics (Zalesky et al., 2014) and resulting connectivity
displayed during cognition (Nee, 2021), where the organiza-
tion of functional brain networks, and their network reconfig-
urations, are constrained and supported by underlying white-
matter structural connectivity of intrinsic brain networks (Gu
et al., 2015; Park and Friston, 2013). Small-world topologies
(a combination of high local clustering and efficient path-
ways for long-distance communication) optimally facilitate
the structural connectivity and functional integration of dis-
tant brain areas (E. Bullmore and Sporns, 2012; Gallos et al.,
2012; van den Heuvel et al., 2009), affording network ef-
ficiency through both global functional integration (Langer
et al., 2012) and flexible local connectivity (Bertolero et
al., 2018; Dubois et al., 2018; Santarnecchi et al., 2014).
The resulting topological balance of integrated and segre-

gated edges (Cohen and D’Esposito, 2016; van Vreeswijk
and Sompolinsky, 1996; Wang et al., 2021) produces critical
network dynamics that balance the connectome in a maxi-
mally connected and flexible state (Beggs, 2008; Fekete et
al., 2021; Vázquez-Rodríguez et al., 2017), facilitating the
dynamic brain network reconfigurations that give rise to both
efficient and specialized information processing (D. S. Bas-
sett et al., 2011; Braun et al., 2015; Finc et al., 2020; Shine
et al., 2016).

One important respect in which this view differs from
other cognitive neuroscience theories, such as Process Over-
lap (Kovacs and Conway, 2016) or Network Sampling (Soreq
et al., 2021), is by emphasizing the constraints that brain
network architecture places on flexibly reconfiguring brain
networks during task-based cognition (e.g., Barbey et al.,
2013a; Bolt et al., 2017; Cole et al., 2014; Dehaene et al.,
1998; Gu et al., 2015; Kitzbichler et al., 2011) and across
development (Byrge et al., 2014; Na et al., 2018; Oldham
and Fornito, 2019; Zuo et al., 2017). In particular, Net-
work Neuroscience predicts the importance of both segre-
gation and integration across brain networks for facilitating
intelligence via small-world organization—where as Process
Overlap predicts that intelligence depends only on functional
network integration. Small-world networks enable a balance
between specialized, locally connected information process-
ing and global connectome-wide communication (Gallos et
al., 2012; Watts and Strogatz, 1998), resulting in modular
autonomy between neural systems (Barbey, 2018; Barbey et
al., 2015; Meunier et al., 2010) and efficient network integra-
tion (Achard and E. Bullmore, 2007; Avena-Koenigsberger
et al., 2019; Khambhati et al., 2018) that reflects the modular
and integrated hierarchy of cognitive abilities (Román et al.,
2014; Spearman, 1904; Spearman, 1927; van den Heuvel et
al., 2009).

Network Neurosience Theory therefore argues that brain
network modularity and segregation (Bertolero et al., 2018;
Bertolero et al., 2015; Gallos et al., 2012) support both global
and local integration and connectivity (Langer et al., 2012;
Santarnecchi et al., 2017b; van den Heuvel et al., 2009), re-
sulting in a small-world network architecture (D. S. Bassett
and E. T. Bullmore, 2017) and topological balance (Wang
et al., 2021) of connections that affords network reconfigu-
rations from a critically balanced state (Beggs, 2008; Fekete
et al., 2021; Vázquez-Rodríguez et al., 2017) to either topo-
logically similar, or to topologically distant network states
(Gu et al., 2015), in the service of task demands. This im-
portantly allows the Network Neuroscience Theory to pro-
pose that g emerges from the information processing abili-
ties of the brain, and that individual differences in two broad
abilities, crystallized intelligence and fluid intelligence, are
respectively facilitated by transitions to easy-to-reach net-
work states (supported by strongly connected hub nodes) and
difficult-to-reach network states (supported by diffuse, weak
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functional connections). In this way, the theory makes con-
tact with cognitive theories of intelligence at multiple levels
of their factor structure (both general and broad), represent-
ing an advance from theories that focus on single modalities
of neuroscience data, or single levels in the hierarchy of cog-
nitive abilities. Further, this network dynamics perspective
permits Network Neuroscience Theory to explain observa-
tions about the positive manifold, such as the observed fac-
tor structure of g (Schneider and McGrew, 2018) and fac-
tor differentiation (Detterman and Daniel, 1989), in terms
of brain network dynamics, and to further explain individ-
ual differences in those network transitions in terms of the
underlying architecture and topology of brain networks that
support flexibility, modular structure and small-world orga-
nization. Though evidence for Network Neuroscience the-
ory remains primarily indirect, it suggests intriguing poten-
tial as an explanation for intelligence, and more generally
for the modular and parallelized organization of cognitive
abilities (Barbey, 2018; Barbey et al., 2015; Robinson et al.,
2009). Research in Network Neuroscience therefore repre-
sents a promising path forward towards elucidating the neu-
robiological underpinning of g, motivating future research
into the precise mechanistic role of human brain network or-
ganization (Mill et al., 2017) and brain network dynamics
(Girn et al., 2019) in broad and general facets of intelligence.

Conclusions

What indeed are the neurobiological foundations of indi-
vidual differences in g? Several primary questions remain to
motivate future research and theory development.

I: To what extent can current methods in network neuro-
science be used to successfully reconcile the sometimes over-
lapping claims made by current cognitive neuroscience theo-
ries to more precisely elucidate the neurobiological founda-
tions of g?

II: Does the assumption that g originates from a primary
brain region or network remain tenable, or should theories
instead broaden their explanatory scope to incorporate evi-
dence for individual differences in the global topology and
dynamics of the human brain?

III: To what extent can individual differences in broad and
general facets of intelligence be accounted for by brain net-
work dynamics? Do top-down mechanisms for cognitive
control figure prominently in facilitating these network re-
configurations, or do network dynamics depend instead on
more emergent processes, potentially facilitated by predic-
tion and error?

As this chapter highlights, a formally precise and unifying
theory of the cognitive neuroscience of g remains a challenge
to formulate—due in part to the spatially and temporally
overlapping nature of the existing theories, and the indirect
nature of the neuroscience evidence for them. Neuroscience
research demonstrates that the human brain is a complex net-

work, structured to provide both the widespread global in-
tegration and specialized regional connectivity that support
general and specific cognitive abilities. The development
and maintenance of cognitive abilities appear to emerge from
the remarkably dynamic nature of the brain—both the slower
adaptation of structural connections during learning, and the
faster functional reconfiguration of brain networks while per-
forming functional tasks. At many levels of resolution—
psychometric (van der Maas et al., 2006), developmental
(Savi et al., 2019), cellular (Geary, 2019, neural (Neubauer
and Fink, 2009; Schubert et al., 2017), regional (Duncan et
al., 2000), network (Barbey, 2018; Duncan, 2010; Jung and
Haier, 2007; Kovacs and Conway, 2016, phenotypic (Kievit
et al., 2016), and global (Euler, 2018)—theories of intelli-
gence either draw either directly or indirectly from research
into cognitive neuroscience, making overlapping predictions
between the abilities and organization of the brain, and the
structure of the cognitive abilities.

While current cognitive neuroscience theories of intelli-
gence each propose to explain individual differences in g on
the basis of neurobiological evidence, these theories are each
pitched at different levels of resolution, are often built on the
basis of different modalities of research evidence. Looking
across these theories as a whole, two central themes emerge:
the importance of specialized regions and connections that
support flexible brain network reconfiguration, and the im-
portance of global brain network topology and organization.
Reconciling these regional and global levels of resolution can
be difficult, in part due to the indirect nature of relationships
between g and cognitive neuroscience evidence.

A key area for future research and theory development
is the incorporation fine-grained mechanisms for network
reconfiguration (e.g., Avena-Koenigsberger et al., 2019;
Khambhati et al., 2018) into accounts of the emergence of g
from large-scale brain networks (Bressler and Menon, 2010;
Varoquaux et al., 2018). Current research in systems neuro-
science suggests an explanation for g in which global princi-
ples of network topology organize connectivity into a mod-
ular and hierarchical structure, and that same modular struc-
ture (and the local topology it affords) further tunes and re-
fine those global properties. This modular and dynamic hi-
erarchy produces the adaptive and massively parallel nature
of human cognition, facilitating topological reconfigurations
of brain networks during cognition Cole et al., 2014 that
depend critically on modifying the allegiance of hub nodes
and network modules (Bolt et al., 2017). While the crit-
ical role of modules for organizing and maintaining brain
network topology may be a general organizational principle
across the connectome (Bertolero et al., 2018), the particular
hub regions and modules that facilitate brain network recon-
figurations display flexible membership with frontoparietal
and multiple demand network (Camilleri et al., 2018; Cole
et al., 2012; Power and Petersen, 2013), and appear to play
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an important role coordinating network state transitions re-
lated to task-based cognitive performance (Cole et al., 2013;
Duncan and Owen, 2000) and general intelligence in par-
ticular (Barbey et al., 2013a; Hilger et al., 2017). Adjust-
ments to both long-range structural connectivity (Byrge et
al., 2014; Gu et al., 2015), and intrinsic functional network
representations (Yeo et al., 2011; Yeo et al., 2014), produce
and maintain a connectome that can sit in a balanced, critical
states (Beggs, 2008; E. Bullmore and Sporns, 2012; Fekete
et al., 2021; Sporns et al., 2004). Mismatches between ex-
ternal task demands and internal representations (e.g.,Bubic
et al., 2010; Ficco et al., 2021; Huang and Rao, 2011) appear
to perturb this connectome, facilitating network reconfigura-
tions through a pattern of excitatory and inhibitory functional
signaling (Cole et al., 2012), leading to the top-down and
bottom-up recruitment of a hierarchy of task-relevant func-
tional modules (Bolt et al., 2017; Soreq et al., 2021).

A key challenge going forward is to develop theories that
can account for these various resolutions of network mech-
anism while generating testable predictions. These network
mechanisms involved in g will support the specialization and
local efficiency of many segregated network communities,
while simultaneously affording long-range integration and
global efficiency between networks. A primary strength of
Network Sampling and the Network Neuroscience Theory
of general intelligence is that each can offer a parsimonious
mapping of those neurobiological properties to cognitive
abilities, such that segregated local communities and global
network integration respectively underlie specific cognitive
capacities and the recruitment of those operations to adap-
tively facilitate cognitive performance. These hierarchies of
brain networks—either spatially hierarchical (as in process-
ing overlap) or dynamically hierarchical (as in network neu-
roscience) may in fact mirror the factor structure of cognitive
abilities, in which narrow cognitive abilities (e.g., induction,
lexical knowledge) can be grouped into broad abilities (e.g.,
fluid intelligence, crystallized intelligence) that collectively
reflect overall individual differences in intelligence (i.e., the
positive manifold).

Two primary limitations currently beset cognitive neuro-
science theories of general intelligence. A first weakness
of cognitive neuroscience theories is the somewhat indirect
nature of the evidence they assemble. Much neuroimag-
ing evidence emerges from of an investigation into a par-
ticular modality of neuroscience data (structural, functional,
metabolic) using a particular analytic technique. Further,
only a subset of empirical evidence is focused particularly
on the neurobiology of the positive manifold. Network neu-
roscience evidence shows a clear relationship between un-
derlying brain networks and individual differences in cog-
nitive ability - however, many of these network properties
are studied at a single level of resolution in isolation, as op-
posed to investigated jointly, or with respect to general intel-

ligence explicitly. This lack of mechanistic and explanatory
exclusivity compounds the indirect nature of network neu-
roscience evidence. Consider the well known relationship
between intelligence and gray matter volume (Cole et al.,
2012). How often do studies include and control for this rela-
tionship when investigating the contributions of other neuro-
biological properties to intelligence? Is it even appropriate to
perform this control? Similarly, little work has been done to
establish specificity in neuroimaging theories by distinguish-
ing experimentally between existing cognitive neuroscience
theories of general intelligence, or by attempting to replicate
the corpus of results on which they base their evidential sup-
port (e.g., see Kruschwitz et al., 2018).

This leads to a second limitation of current theories: net-
work neuroscience research makes limited interdisciplinary
contact with psychology theories on the structure of intelli-
gence and the positive manifold. While factor accounts of
g and positive manifold remain predominant (Schneider and
McGrew, 2018), growing reinterest in network models of in-
telligence has led to the reemergence of sampling theorem
(Thomson, 1951), and newfound interest in network models
(Savi et al., 2019; van Der Maas et al., 2017) for explaining
the structure and development of cognitive abilities. While
Processing Overlap (Kovacs and Conway, 2016) and Net-
work Sampling (Soreq et al., 2021) take a sampling theorem
perspective, their neuroimaging evidence is again primarily
indirect, and does not provide a test of the predictions made
by sampling theorem against the different predictions made
by other formal explanations of g. Even the use of sam-
pling theorem is novel, as most network neuroscience theo-
ries adopt a factor analytic perspective to g. To the extent that
neuroscience theories parse the neurobiology of broad facets
of intelligence, their focus is predominantly on the distinc-
tion between fluid and crystallized intelligence. The CHC
account of the positive manifold and the factor structure of
g identifies up to 14 broad intelligences beyond G f and Gc
that load onto g, identifying for example, facets as various
as short-term memory (Gsm), processing speed (Gs), audi-
tory processing (Ga), and domain-specific knowledge (Gkn).
Of these broad facets, Neural Speed (Schubert et al., 2017)
and the Watershed Model (Kievit et al., 2016) remain the
only neuroscience theories which address individual differ-
ences in broad ability beyond G f and Gc, namely process-
ing speed—and not ways consistent with the well-supported
factor structure of intelligence identified by CHC theory. Be-
yond factor and sampling theories on the positive manifold,
more recent cognitive neuroscience theories of intelligence
remain unexplored in neuroscience data. At present, little at-
tention has been paid by neuroscience to theoretical predic-
tions on the structure of intelligence, with a particular lack
of within-subjects data from developmental and longitudi-
nal studies. Building a more robust network neuroscience of
intelligence may ultimately require a more precise mapping
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between brain networks and cognitive abilities, reflecting the
nuanced hierarchical relationships between cognitive opera-
tions and neurobiological substrates that facilitate the posi-
tive manifold.

To what extent can or should cognitive neuroscience
theories of intelligence further integrate with findings on
individual differences in the positive manifold from non-
neuroscience fields? g is fundamentally a measure of indi-
vidual differences, and characterizing the neurobiology that
underlies individual differences in cognitive ability remains
an open problem. In particular, understanding remarkable
breadth of variation in human intellectual abilities will re-
quire accounting for intellectual performance at very high
ends of the human population’s distribution, either in terms
of a more fundamental characterization of the nature of
brain network dynamics, or a more fundamental reassess-
ment of individual differences in the mapping between net-
work topology and cognitive performance. Further, it re-
mains an open question how generally to map levels of the
hierarchy of intellectual abilities (general, broad, and nar-
row) onto levels of resolution in brain networks. What role
might higher-order representations of network structure and
dynamics, possibly beyond those currently assessed in con-
nectomics, have to play in facilitating dynamic reconfigura-
tion in brain networks? What unifying theories and modeling
approaches could be applied to develop a more integrated
and comprehensive understanding of the brain network dy-
namics, in order to better account for the network relation-
ships between intelligence, neurobiological structures, and
the information-processing capabilities they support (Savi et
al., 2021)?

Finally, a full and comprehensive understanding of human
intelligence may require characterizing the developmental
timecourse cognition over the lifespan with respect to proper-
ties of brain networks and their topology. Cognitive abilities
develop and decline at differing rates through the lifespan—
how do these changes map onto the structure of the brain,
and in what respects are they sensitive to genetic and en-
vironmental factors? As the scope of these issues suggest,
fundamental questions about the nature and mechanisms of
human intelligence remain. Cognitive neuroscience theories
of intelligence will hopefully continue to provide a catalyst
for contemporary network neuroscience research in this area,
motivating important future work into neurobiological un-
derpinnings of individual differences. Several key questions
remain, promising to enhance our understanding of the fun-
damental nature of human intelligence and individual differ-
ences if they can be answered. Through further investigat-
ing the neurobiological foundations of general intelligence,
network neuroscience will continue to make advances in our
understanding of the remarkable breadth and variation of hu-
man abilities.
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