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Cognitive Neuroscience Theories  
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Network neuroscience research into intelligence 
has emphasized two primary neurobiological 
mechanisms that underlie cognitive ability: the 
flexible, dynamic integration of multiple brain net-
works during information processing, and the net-
work topology of densely-connected hub nodes 
that drive or coordinate network reconfiguration. 
Several cognitive neuroscience theories of intelli-
gence appeal to these properties when drawing on 
neuroscience evidence to explain individual differ-
ences in cognitive ability. In this chapter, we review 
cognitive neuroscience hypotheses and theories of 
human intelligence, including neural speed and 
neural efficiency hypotheses, the Parieto-Frontal 
Integration Theory and Multiple Demand Theory, 
Process Overlap Theory and Network Sampling 
Theory, predictive processing models, the 
Watershed Model, and the Network Neuroscience 
Theory. While each of these theories draw on a 
well-established body of neuroscience evidence, 
they are also each tied to the research methods and 
techniques that gave rise to them, complicating 
efforts to compare their claims and predictions. In 

reviewing the evidence for current neuroscience 
theories, we discuss the methodological challenges 
of studying general intelligence with neuroscience 
data, identify the particularly promising strengths 
of network sampling- and topology-based theories 
of intelligence, and raise several key questions to be 
addressed in future research.

Neuroscience research demonstrates that the 
human brain is a complex network, structured to pro-
vide both the widespread global integration and spe-
cialized regional connectivity that support general 
and specific cognitive abilities. The development 
and maintenance of cognitive abilities appear to 
emerge from the remarkably dynamic nature of the 
brain—both the slower adaptation of structural con-
nections during learning, and the faster functional 
reconfiguration of brain networks while performing 
functional tasks. This network-based perspective 
has become highly influential in cognitive neuro-
science, motivating a wealth of models and formal 
theories which associate individual differences in 
the psychological structure of human intelligence 
with underlying neurobiological networks.

In this chapter, we provide an overview of the 
exciting current research into cognitive neurosci-
ence theories of intelligence. We begin with an over-
view of psychometric research into intelligence, 
highlighting the recent emergence of theories that 
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approach cognitive ability from a network perspec-
tive. We then discuss general neuroscience accounts 
of intelligence, including the mitochondrial effi-
ciency, neural speed, and neural efficiency hypothe-
ses. Next, we discuss the early development of brain 
network models, focusing on the Parieto-Frontal 
Integration Theory, and Multiple Demand Theory. 
We then transition to more recent models that 
sample intelligence from multiple brain networks, 
including Process Overlap Theory, and Network 
Sampling Theory. Also, we discuss the most 
dynamic models of intelligence, covering predictive 
processing models, the Watershed Model of fluid 
intelligence, and Network Neuroscience Theory. 
Finally, we highlight the relationship between 
developments in neuroscience methods and theories 
of intelligence, and point to the particularly promis-
ing strengths of network-based theories of intelli-
gence. We conclude by summarizing current issues, 
challenges, and future directions for the cognitive 
and systems neuroscience field as a whole, outlin-
ing several questions for future research into the 
study of intelligence and cognition.

What are BraIn netWorks?

The field of Network Neuroscience (Bassett and 
Sporns, 2017) proposes to study the structure and 
function of the brain by interrogating the architec-
ture and topology of brain networks. Networks are 
emergent phenomena that characterize the complex 
behavior of many real-world systems (Newman, 
2003). The dominant research paradigm used in 
cognitive neuroscience to image brain network 
topology (Yeo et al., 2011) is functional Magnetic 
Resonance Imaging (fMRI; Davis and Poldrack, 
2013; Poldrack, 2008), which localizes changes in 
blood flow to specific regions in the brain to produce 
a mathematical graph of synchronous brain network 
connectivity, known as the connectome (Sporns, 
2011). Several other structural and functional neuro-
imaging modalities can also be used to generate 
connectivity data. Researchers represent networks 
of brain connectivity data using a graph g = (V, E) 
(cf. Newman, 2010), such that regions in the brain 
are represented by V, a set of vertices, and ordered 
pairs of either directed or undirected edges E repre-
sent connectivity between those brain regions.

Many real-world systems can be characterized 
using networks to highlight important organiza-
tional properties, which has helped to facilitate the 
widespread adoption network science as an inter-
disciplinary field (Mitchell, 2009). In cognitive 
neuroscience, key network properties (Medaglia 
et al., 2015) that have inspired research and theory 

into human intelligence include the degree distri-
bution of node connectivity (van den Heuvel and 
Sporns, 2013) and small-world properties (Bassett 
and Bullmore, 2006; 2017). Connectivity data 
show that long-range connections (van den Heuvel 
et  al., 2012) across the brain are facilitated by a 
rich-club (van den Heuvel and Sporns, 2011) of 
densely interconnected hub regions, that enabling 
fast and efficient (Langer et al., 2012) connectivity 
between disparate, specialized brain regions. 
Research into the features of brain network 
topology that support these moment-to-moment 
changes in network connectivity profiles (Avena-
Koenigsberger et  al., 2019; Gu et  al., 2015; 
Senden et al., 2014; Shine et al., 2016; Vázquez-
Rodríguez et  al., 2017), often termed “network 
reconfigurations”, highlight that the brain is an 
inherently dynamic system (Sporns et al., 2000a), 
where communication between brain networks 
depends on controlling activity in the connectome 
through a series of functional states (Srivastava 
et al., 2020). Regions that compose brain networks 
are known to highly overlap (Schultz and Cole, 
2016; Yeo et  al., 2014), such that a single brain 
region can map to membership in many possible 
brain networks, flexibly reconfiguring its connec-
tivity profile to serve different cognitive demands 
(McIntosh, 2000; Pessoa, 2014; Yeo et al., 2014).

Neuroscience research into intelligence increas-
ingly draws on these network perspectives and 
methods, proposing that the structure of cogni-
tive abilities and individual differences is directly 
reflected in the underlying organization and topol-
ogy of brain networks (Barbey et al., 2014; Betzel 
and Bassett, 2017; Cole et  al., 2014; van den 
Heuvel et al., 2009), and associating intelligence 
with the dynamic reconfigurations of those brain 
networks during cognition (Barbey, 2018; Shine 
et al., 2016; Soreq et al., 2021).

PsychometrIc theorIes of human 
IntellIgence

The fundamental finding in psychometric research 
into intelligence was Charles Spearman’s observa-
tion in the early 1900s of the “positive manifold” 
effect – the invariable and inevitable positive corre-
lation between performance across cognitive ability 
tests. This general factor, g, characterizes the shared 
variance common to all cognitive abilities, reflect-
ing that all cognitive tests measure something in 
common. Further, variance in ability that is unique 
to particular tests will also exist, as Spearman 
observed when noting that the correlation between 
cognitive abilities was not perfect (for example, 
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differing performance on a test of French language 
versus a test of mathematics). Soon thereafter 
emerged a second key observation: the introduction 
of the hierarchical model of cognitive abilities (as 
proposed by Spearman, using an early factor ana-
lytic method). The factor analytic approach to eluci-
dating the structure of intelligence, extracts specific 
cognitive ability factors from observed performance 
on various cognitive tests (cf. Godfrey Thomson’s 
work), which then construct a hierarchy of cognitive 
abilities. Today, this dominant view of intelligence 
is best characterized by the Cattell-Horn-Carroll 
(CHC) theory whereby a latent variable g (general 
intelligence) causes all shared variance in broad 
intellectual abilities (e.g., general intelligence, fluid 
intelligence, short-term memory), which can each 
be measured from specific tests of narrow cognitive 
abilities – inductive reasoning, perceptual speed, 
free-recall memory (cf. Boyle, 1988; Flanagan and 
Dixon, 2014; Schneider and McGrew, 2018). This 
consensus remained dominant throughout the 20th 
century, and indeed, research continues to identify 
the “positive manifold” effect (Caemmerer et  al., 
2020) in studies conducted using modern psycho-
metric test batteries.

However, a critical issue with psychometric 
research into intelligence remains. Several alterna-
tive explanations of the “positive manifold” exist, 
beyond the reflective factor model first identified 
by Spearman, and in most cases behavioral data 
alone is not able to distinguish between these com-
peting theoretical explanations. This motivates the 
use of neuroscience data in studying theories of 
intelligence, ideally to map the neural substrates 
and network operations that underpin specific 
cognitive abilities (Pessoa, 2014; Varoquaux 
et al., 2018), affording empirical tests of the vari-
ous formal structures of intelligence proposed by 
behavioral theories. Relevantly, developments in 
psychometric theories of g somewhat mirror the 
development of cognitive neuroscience theories of 
intelligence, reflecting an emerging trend towards 
formal network models of human intelligence.

From the beginning of the 20th century, theories 
of intelligence have adopted a network perspective. 
Indeed, one long-standing sampling theorem per-
spective is that the “positive manifold” effect may 
emerge from many overlapping cognitive processes 
(Bartholomew et al., 2009). Instead of associating 
the “positive manifold” effect with a causal latent 
factor g, sampling theorem rejects the existence of a 
single unifying factor. Network representations are 
often employed when appealing to a sampling the-
orem, either in explaining intelligence as an over-
lapping network of cognitive abilities (Hampshire 
et  al., 2012), or explicitly identifying those net-
works of cognitive ability with human brain net-
works (Kovacs and Conway, 2016; McIntosh, 2000; 

Soreq et al., 2021). Other formal models of intelli-
gence, such as the mutualism model (van der Maas 
et al., 2006) or the wiring model (Savi et al., 2019), 
provide more novel explanations for the structure of 
intelligence, again grounded in network represen-
tations (Savi et al., 2021). Briefly, we will provide 
an overview of models for the “positive manifold” 
effect, thereby providing context and grounding for 
the remainder of our discussion into cognitive neu-
roscience theories of intelligence.

Among factor analytic models, CHC theory 
represents the synthesis of the general factor g 
and hierarchical models of mental ability, reflect-
ing the culmination of almost a century of psycho-
metric research. In the early 1900s, Spearman had 
hypothesized that the g factor reflected a form of 
intellectual capacity for work, represented in indi-
vidual differences across tests of mental ability. 
Contrasting factor analytic findings followed, with 
Louis Thurstone proposing that g can be decom-
posed into a larger set of specific factors represent-
ing discrete cognitive abilities. Theorizing began to 
center on two primary broad factors of intelligence, 
fluid intelligence (Gf) and crystallized intelligence 
(Gc), originating from a bifactor models of intelli-
gence proposed by Donald Hebb, and based on fac-
tor analytic evidence, Gf–Gc theory was proposed 
by Raymond Cattell (cf. Brown, 2016). Gf reflects 
adaptive problem-solving skills independent of 
prior experience or training, whereas Gc reflects 
previously acquired knowledge and skills (Carroll, 
1993; Cattell, 1982, 1987; McGrew and Wendling, 
2010). John Horn and Raymond Cattell contin-
ued to refine this model, culminating ultimately 
in the development of CHC theory (Carroll, 1993; 
Flanagan and Dixon, 2014; Horn, 1988; Horn 
and Noll, 1997; Jewsbury et  al., 2017; Schneider 
and McGrew, 2012, 2018), where Carroll’s three- 
stratum factor proposes that g produces variance 
across up to 16 broad abilities (e.g., Gf, Gc; cf. 
Schneider and McGrew, 2018) that produce many 
more narrow abilities. As we will discuss later in 
further detail, neuroscience evidence lends support 
to a mapping between hierarchical cognitive abili-
ties and hierarchical brain network organization 
(Betzel and Bassett, 2017; Meunier et  al., 2010; 
Román et  al., 2014), which alongside behavioral 
evidence (Caemmerer et al., 2020) continue to lend 
support to the factor modeling perspective.

netWork theorIes of human 
IntellIgence

Following Spearman’s identification of the g 
factor, Thompson proposed viewing intelligence 
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as a global network phenomenon, originating 
research into the sampling theory of intelligence. 
Thomson suggested that the “positive manifold” 
results from the overlap of shared cognitive pro-
cesses, proposing that each cognitive test neces-
sarily measures more than one cognitive ability at 
once, producing the overlap in mental processes 
that produces the statistical appearance of the 
“positive manifold” (cf. Thomson, and Edward 
Thorndike’s work). Sampling models have been 
revived in recent years, with behavioral work 
(Bartholomew et al., 2013; Jensen, 2006) that has 
applied sampling theory to both domain-specific 
and domain-general processes, and with neurosci-
ence work (Kovacs and Conway, 2016; Soreq 
et  al., 2021) providing evidence that network 
operations may help to support the role of network 
sampling in intelligence.

Most recently, explanations of the “positive 
manifold” have been generated from a fully net-
work perspective (Colom et  al., 2010; van der 
Maas et al., 2019), accounting for g through recip-
rocal interactions between a network of underly-
ing cognitive abilities. One such formal network 
model of intelligence emerges from mutualism 
theory (van der Maas et al., 2006; van der Maas 
et  al., 2019), which proposes that the “posi-
tive manifold” and the hierarchical structure of 
cognitive abilities both emerge from recipro-
cal exchanges between elements of an extended 
network of cognitive processes during develop-
ment (Kievit, 2020; Kievit et al., 2017; Ou et al., 
2019; Peng and Kievit, 2020). Mutualism theory 
accounts for Gf and Gc (van Der Maas et al., 2017) 
by modeling cognitive abilities as a network, 
where local interactions between elements replace 
the reflective factor structure of g as the cause of 
the internal structure of cognitive abilities (Kan 
et al., 2020). In this account, a mental ability can 
develop in a somewhat autonomous manner, but 
will also change or grow due to growth in other 
areas via mutual exchanges. A related theory, the 
wiring model (Savi et al., 2019), adopts an entirely 
dynamic account of network development. Wired 
intelligence theory models intelligence as a net-
work of developing cognitive abilities, account-
ing in particular for knowledge acquisition and 
the development of crystallized intelligence. In 
an ensemble, these network models can formally 
account for the “Matthew effect” (advanced by 
Robert Merton) of divergent developmental out-
comes in cognitive ability, adopting an idiographic 
perspective (Molenaar, 2004) to deploy dynamic 
network models that capture the cognitive devel-
opment of single individuals. Wired intelligence 
may represent a promising new direction as a 
formal model for interdisciplinary research into 
skill acquisition, particularly applied to the study 

of individual differences in cognitive training 
(Bassett et al., 2011; Daugherty et al., 2020; Finc 
et al., 2020; Ree and Earles, 2006; Román et al., 
2017, 2019; Zwilling et  al., 2019), where argu-
ments made for transfer and neuroplasticity are 
closely aligned with those made for the emergence 
of g during development and education (Ackerman 
and Lohman, 2003; Nisbett et al., 2012).

Unlike factor and sampling approaches to intel-
ligence, cognitive neuroscience theories of intelli-
gence have yet to devote empirical effort to directly 
testing formal network models of the “positive 
manifold”. However, neuroscience research has 
indirectly argued in favor of the extended devel-
opmental (Byrge et  al., 2014) and neurobiologi-
cal (Barbey, 2018) network interactions that are 
entailed by formal network models, suggesting 
that future neuroscience work in this space may 
be warranted. Critically, both mutualism and wir-
ing theory allow for individuals to be formally 
modeled by individualized network models, sug-
gesting future interdisciplinary research where 
formal network models of intelligence may make 
contact with current cognitive neuroscience trends 
towards individualized methods for prediction 
(Finn and Rosenberg, 2021; Gabrieli et al., 2015) 
and individual differences modeling (Daugherty 
et al., 2020; Kievit et al., 2016; McFarland, 2017; 
Soreq et al., 2021).

neuroscIence theorIes  
of IntellIgence

Neuroscience research into human intelligence 
has extended our understanding of the structure of 
the “positive manifold” by identify neurobiologi-
cal structures and mechanisms that underpin cog-
nitive abilities. Building on that research, network 
neuroscience has emphasized two primary neuro-
biological mechanisms that underlie cognitive 
ability: the flexible, dynamic integration of brain 
networks during information processing (Braun 
et  al., 2015; Cohen and D’Esposito, 2016; Nee, 
2021; Ray et al., 2020; Shine et al., 2016; Wang 
et al., 2021), and the topology and connectivity of 
densely connected hub nodes (Bertolero et  al., 
2018; Cole et al., 2013; Power et al., 2013; Senden 
et  al., 2014, 2018; van den Heuvel and Sporns, 
2013) that drive or coordinate efficient network 
reconfiguration. Continually updating neural rep-
resentations of prior knowledge to account for 
new information affords for both the long-term 
changes to neural architecture (Byrge et al., 2014; 
Chai et  al., 2017) and the moment-to-moment 
neural representation of predictions (Bubic et al., 
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2010; Ficco et  al., 2021) that facilitate adaptive 
behavior and decision making. Contemporary 
network neuroscience research conceives of the 
brain as an active and dynamic inference genera-
tor, anticipating incoming sensory inputs and 
forming hypotheses about that world that can be 
tested against incoming sensory signals (Clark, 
2013; Friston, 2010).

Building on previous research that identifies 
the “positive manifold” and the factor structure 
of intelligence with individual brain regions and 
networks (Haier, 2017), network neuroscience 
theories of intelligence instead propose that indi-
vidual differences in intelligence emerge from the 
global architecture of brain network topology. The 
balanced organization of these networks affords 
critical dynamics, through the active generation 
and reconfiguration of functional network states. 
This ability to optimally integrate networks 
together from disparate regions is critical to pro-
ducing intelligence, facilitating a process where 
cognitive operations are implemented by discrete 
and specialized functional modules (Bertolero 
et al., 2015), and performing novel tasks requires 
recruiting those assembling those modules and 
subnetworks into an efficient configuration (as 
in the Multiple Demand theory; Camilleri et  al., 
2018), a process afforded by brain network organ-
ization that can balance this competing needs of 
local structure and efficient global communica-
tion, perhaps explaining their ubiquitous presence 
in many real-world systems, the brain included 
(Bassett and Bullmore, 2017) and their relation-
ship to intelligence (Langer et al., 2012).

Network neuroscience theories of intelligence 
can be conceptualized along a spectrum of reso-
lution, from individual brain networks to global 
whole-brain properties. Neurobiological locali-
zation has proven a successful framework for the 
study of many specific cognitive abilities, and a 
wealth of existing neuroscience evidence high-
lights the importance of specialized brain regions 
and networks, supporting localist theories of intel-
ligence that primarily ascribe intelligence to spa-
tially localized neurobiology. Current evidence in 
network neuroscience (Bassett and Sporns, 2017) 
highlights the critical role of brain network topol-
ogy and dynamics in cognitive abilities, suggest-
ing that the architecture and topology supporting 
the “positive manifold” spans the entire connec-
tome (Dubois et al., 2018; Suprano et al., 2019). 
A balance of strong connections supporting effi-
cient functional integration (Deco et  al., 2015; 
Gallos et al., 2012; Langer et al., 2012) and weak 
connection supporting functional segregation 
(Bertolero et al., 2015, 2018; Gallos et al., 2012) 
produce a modular (Hilger et al., 2017) and small-
world (Bassett and Bullmore, 2006, 2017) neural 

architecture, enabling the dynamic and flexible 
reorganization of brain activity during cognition. 
The critical role of global network flexibility in 
higher cognition identified by network neuro-
science (Bassett et  al., 2011; Braun et  al., 2015; 
Cabral et al., 2017; Finc et al., 2020; Shine et al., 
2016) suggests that perspective which localize 
intelligence to single regions and networks may 
fail to account for the systemwide neural proper-
ties that underpin individual differences in intel-
ligence. While cognitive neuroscience theories 
of intelligence each draw from a well-established 
body of neuroscience, they are also each tied to the 
research methods and techniques that gave rise to 
them—somewhat complicating efforts to compare 
their claims and predictions.

general neuroscIence theorIes  
of IntellIgence

The dependency between research methods and 
theories of intelligence can be illustrated with a 
brief survey of non-fMRI neuroscience accounts 
of the biological basis of g. Drawing on distinct 
modalities of research—event-related potentials 
(ERPs; Woodman, 2010), positron emission 
tomography (PET; Lameka et  al., 2016), and 
interdisciplinary neuroscience—theorists have 
arrived at explanations for g at levels of resolution 
that are difficult to directly reconcile with cogni-
tive neuroscience data, or with the formal psycho-
metric accounts of the “positive manifold”. 
Briefly, we discuss the cellular efficiency, neural 
speed, and neural efficiency theories motivated by 
these research modalities, each of which reduce 
the underlying g to a single underlying cause or 
mechanism. Such theories may be useful to cogni-
tive neuroscientists for the illustrative difficulties 
inherent in reconciling their evidence with current 
cognitive neuroscience theories.

The efficiency of mitochondrial functioning 
(Geary, 2018, 2019) has recently been proposed as 
a novel mechanism that accounts for intelligence, 
prompting a diversity (Geary, 2020) commen-
tary and critique from intelligence researchers. 
The theory shares similarities with previous 
efforts (Matzel et al., 2020) to effectively reduce 
(Churchland and Churchland, 1992) differences 
in g to a lower-level biological mechanism—in 
this case, by postulating that the functioning of 
brain systems at all levels of resolution depends 
on the health and energy production of cellular 
mitochondria. One potential merit of explanations 
for the “positive manifold” pitched at a biological 
level is their potential to make more direct contact 

BK-SAGE-BOYLE1E_ET_AT_V2-230083-Chp30.indd   495 25/07/23   8:13 PM



The Sage handbook of CogniTive and SySTemS neuroSCienCe496

with theories (Dickens and Flynn, 2001) and data 
(Tucker-Drob and Bates, 2016) on the genetic her-
itability of intelligence, although as many com-
mentators note (Matzel et  al., 2020; Savi et  al., 
2020; Stankov, 2020; Sternberg, 2020), mito-
chondrial efficiency is purely correlational, with 
hypothesis-driven testing yet to be done. However, 
research into the molecular genetics of intelligence 
(Deary et al., 2021) has begun to make some gen-
eral, if modest, progress towards associating the 
heritabilitiy of intelligence with cognitive traits 
and neuroimaging data, although mechanisms for 
these correlational associations are currently lack-
ing. While the Watershed Model and Network 
Neuroscience Theory (Barbey, 2018; Kievit et al., 
2016) are at least consistent with genetic expla-
nations for the heritability of intelligence, cogni-
tive neuroscience has yet to make any significant 
contact with genetics research, arguably due to the 
mismatch in methods and perspectives adopted by 
their respective fields. Regardless, multidiscipli-
nary approaches to formally model the “positive 
manifold” that merge cognitive neuroscience, psy-
chometrics, and systems biology remain to emerge.

A more established neuroscience account of g, 
neural speed, emerges from research using EEG 
(Schubert et al., 2017, 2019, cf. Jensen, 2006). One 
of the most well-replicated findings in the field is 
the negative association between intelligence and 
reactions time (Der and Deary, 2017), which can 
be measured with moderate success from the laten-
cies of ERP components. Research in this area 
is recently transitioning to a focus on more nar-
rowly defined cognitive tasks and operations—to 
great success, with a model of ERP waves able to 
account for 90% (Schubert et  al., 2017) of vari-
ance in general intelligence, markedly higher than 
the 20% (Dubois et  al., 2018) to 40% (Feilong 
et al., 2021) of variance currently accounted for by 
cognitive neuroscience methods. However, con-
ventional ERP evidence necessarily lacks spatial 
localization, whereas MRI evidence lacks tempo-
ral specificity. The differing lingua franca of these 
respective methodologies complicate any attempts 
to formally integrate ERP data on neural speed 
with cognitive neuroscience methods, short of per-
forming simultaneous recording (Kruggel et  al., 
2000; Moore et  al., 2021; Scrivener, 2021) via 
MRI-EEG, highlighting the close bond between 
research methodology and theoretical perspectives 
relating to current theories of intelligence.

A final influential view is the neural efficiency 
hypothesis (Haier et al., 1988; Neubauer and Fink, 
2009), which primarily associates intelligence 
with glucose metabolism efficiency (perhaps here 
making some contact with mitochondrial func-
tioning), based on support from a variety of PET, 
EEG (Nussbaumer et  al., 2015), fMRI (Dunst 

et  al., 2014), and diffusion (Genç et  al., 2018) 
studies. However, current formulations of neural 
efficiency are somewhat imprecisely defined, and 
in some cases fall prey to the well-understood 
problem in cognitive neuroscience of redescribing 
neural activation as “efficiency” (Poldrack, 2015), 
complicating efforts to translate these various 
findings into a formal mechanistic explanation of 
g that makes contact with conception of network 
efficiency (Langer et al., 2012; Santarnecchi et al., 
2017b; Schultz and Cole, 2016) that has been well 
studied in cognitive neuroscience. Overall, neural 
and biological accounts of the “positive manifold” 
effect make intriguing claims about the under-
lying nature of the g factor. These accounts can 
successfully explain various modality- specific 
phenomena, suggesting, at the least, that the 
empirical findings and open questions posited by 
their frameworks may be important for any com-
prehensive theoretical account of the cognitive 
neuroscience of intelligence to address.

cognItIve neuroscIence theorIes  
of IntellIgence

Neuroimaging studies of the cognitive neurosci-
ence of intelligence have explained individual 
differences in the “positive manifold” by appeal-
ing to the structure and topology of brain net-
works. At a more localized level of resolution, 
several cognitive neuroscience theories have pro-
posed that intelligence emerges from the connec-
tivity of specialized neurobiological substrates, 
both at the level of individual brain regions and 
brain networks. Early studies investigating the 
neurobiology of g implicated the lateral prefrontal 
cortex (PFC; Duncan and Owen, 2000; Duncan 
et  al., 2000), motivating an influential theory 
based on the role of this region in cognitive control 
of functions for intelligent behavior (Barbey et al., 
2013b). Lateral PFC theory predicts that intelli-
gence depends primarily on functional activity 
within frontoparietal regions. Current research 
continues to support the key role of PFC in many 
functional tasks, demonstrating granular func-
tional specialization of neural substrates within the 
region (Gilbert et  al., 2010; Kamigaki, 2019; 
Yamasaki et al., 2002) and emphasizing its impor-
tant role as a specialized region important to cog-
nitive abilities. However, efforts to examine the 
neurobiology of intelligence through a wider lens 
led to the development of cognitive neuroscience 
Theories of Intelligence, accounting for individual 
differences in g in terms of the function and topol-
ogy of broadly distributed brain networks.
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The landmark Parieto-Frontal integration theory 
(P-FIT; Jung and Haier, 2007) predicts that intel-
ligence emerges from integrated neural activity 
within the frontoparietal network. A central feature 
of the P-FIT model is an emphasis on the integra-
tion of knowledge between an integrated network 
of frontal and parietal cortex (along with anterior 
cingulate, temporal, and occipital cortical areas), 
afforded by white-matter fiber tracks that enable 
efficient communication in the service of problem-
solving and hypothesis testing. A wealth of neu-
roimaging evidence exists for the importance of 
a prefrontal network in facilitating human intel-
ligence (Barbey et al., 2012, 2013b, 2014; Braun 
et  al., 2015; Cole et  al., 2012; Daugherty et  al., 
2020; Duncan and Owen, 2000; Duncan et  al., 
2000; Gilbert et  al., 2010; Gläscher et  al., 2010; 
Jung and Haier, 2007; Kamigaki, 2019; Pineda-
Pardo et al., 2016; Yamasaki et al., 2002), suggest-
ing that the frontoparietal network serves a key 
role across may problem-solving contexts, respon-
sible for displaying a general profile of task-based 
activation across a variety of cognitive operations 
(Cole et al., 2013, 2014; Vakhtin et al., 2014).

Evidence to support this general role of the fron-
toparietal network in a broad range of problem-
solving tasks helped motivate the Multiple Demand 
(MD) Theory, which proposes that the Multiple 
Demand network underlies attentional control mech-
anisms for goal-directed problem-solving (Camilleri 
et al., 2018; Duncan, 2010), recruiting from a core 
set of regions in midcingulate cortex, bilateral ante-
rior insula, inferior frontal junction and gyrus, right 
middle frontal gyrus, and right inferior parietal cor-
tex and intraparietal sulcus. MD theory accounts for 
intelligence and problem-solving using a flexible 
network of frontoparietal and cingulo-opercular 
regions (Camilleri et al., 2018; Diachek et al., 2020; 
Fedorenko et al., 2013). While many frontoparietal 
connections are also entailed by Multiple Demand 
system, the network includes additional vertices cen-
tral in attentional networks (Mineroff et  al., 2018) 
and cingulo-opercular systems (Camilleri et  al., 
2018). reflects the inclusion frontopareital systems 
with a second, relatively dissociable (Crittenden 
et  al., 2016) cingulo-opercular system. With the 
functional recruitment of the frontoparietal system 
serving a more general processing role for a broad 
set of cognitive abilities, connectivity in the cingulo-
opercular system codes for more differentiable 
cognitive operations, possibly representing more 
individualized and topologically local activation pat-
terns, compared to the more globally recruited archi-
tecture present in the frontoparietal system.

Current research lends broad support for the impor-
tance of the frontoparietal network, with two recent 
meta-analyses (Basten et  al., 2015; Santarnecchi 
et  al., 2017a) highlighting the convergence of 

neuroimaging evidence in support of the P-FIT the-
ory. However, parsing the extent to which network 
patterns of functional connectivity map to a specific 
theory can be challenging, as the regional definition 
of each theory are nested and somewhat overlapping. 
Further, the progression of neuroimaging research 
methods in the intervening decade has complicated 
the methodology of comparing older neuroscience 
studies with more recent theories—for example, 
with P-FIT formulated at the resolution of Brodmann 
areas, while current neuroimaging studies afford 
much a higher topological resolution. It also remains 
unclear to what extent current research into dynamic 
patterns of functional connectivity (Shine et  al., 
2016), or the mesoscale topology of networks that 
supports global dynamic connectivity (Bassett et al., 
2013; Elliott et al., 2020), can be mapped onto these 
localist theories. Together, these mapping problems 
may suggest a mismatch between the original neuro-
science methods and perspectives that provide sup-
port for localist network theories, and more global 
and dynamic perspectives deployed in more recent 
network neuroscience studies.

netWork samPlIng theorIes  
of IntellIgence

More recently, revival of Thomson and Thorndike’s 
sampling theory of intelligence has inspired a new 
thrust of theoretical and empirical neuroscience 
work, associating intelligence and cognition with 
the integration and overlap of processing across 
multiple brain networks. Process Overlap theory 
(Kovacs and Conway, 2016) predicts that intelli-
gence emerges from the functional integration of 
several task-relevant brain regions and networks. 
Process Overlap theory accounts for intelligence 
as the spatial and functional overlap of brain net-
works to facilitate overlapping cognitive processes 
(Kovacs and Conway, 2016), building on evidence 
for the central role of the frontoparietal network in 
general and fluid intelligence (Barbey et al., 2014; 
Jung and Haier, 2007) to suggest that overlapping 
cognitive abilities are instantiated by the overlap of 
functional brain networks (Meunier et  al., 2010; 
Román et al., 2014). While mainly a psychometric 
theory, Process Overlap theory draws support from 
consistent patterns across several neuroscience 
findings, aligning with neuroimaging evidence for 
localized frontoparietal hubs (Barbey et  al., 
2013b), dedicated systems for executive function 
and cognitive control (Niendam et  al., 2012), 
global prefrontal cortex connectivity (Cole et  al., 
2012), and the importance of globally efficient 
functional connectivity (Bullmore and Sporns, 
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2012; Santarnecchi et al., 2014). Process Overlap 
argues that the overlap in cognitive abilities, which 
produces the “positive manifold”, results from an 
overlap in functional brain networks, such that the 
overlap of cognitive processes proposed by the 
theory is reflected directly in the joint functional 
activation of overlapping brain networks.

Previous research suggests that intrinsic func-
tional patterns observed in resting state data con-
strain and shape task-evoked functional states (Bolt 
et al., 2017), and further, that the degree of func-
tional reconfiguration required between resting and 
task-based connectivity is lower for individuals 
with higher intelligence (Schultz and Cole, 2016). 
Recent neuroimaging evidence (Soreq et al., 2021) 
has built on these findings, and on the sampling 
theory of psychometric g, to propose the Network 
Sampling Theory. Using functional neuroimaging 
data, Soreq et al., 2021 demonstrate that task-evoked 
functional network states can accurately classify 
cognitive states during a battery of psychometric 
tasks, suggesting that high- dimensional network 
sampling operations may support flexible network 
reconfiguration across a diverse set of cognitive 
tasks. This perspective aligns closely with the neu-
roscience and psychometric predictions of Process 
Overlap theory, and aligns also with the network 
dynamics perspective of Network Neuroscience 
Theory, where greater fluid abilities depend on 
increasingly complex and  difficult-to-reach net-
work states. Particularly for high- performing indi-
viduals, Soreq et al. (2021) found that multivariate 
network states that reflect underlying cognitive 
operations can be accurately classified, and that 
more complex cognitive operations are associated 
with greater network complexity.

Overall, the evidence suggests that cognitive fac-
ulties relate to the way in which the brain expresses 
these task-optimal network states. Intriguingly, 
the authors suggest that sampling theory provides 
a possible neurobiological explanation for factor 
differentiation (Detterman and Daniel, 1989), the 
phenomenon where intelligence explains a greater 
proportion of variance across tasks for lower- 
intelligence individuals. Higher-intelligence indi-
viduals may display more specific network states, 
reducing the level of overlap in network sampled 
across cognitive tasks. This sampling-based accounts 
provides an intriguing explanation for the neurobiol-
ogy and dynamics of the “positive manifold”.

PredIctIve ProcessIng model

Predictive Processing (Euler, 2018) has also been 
recently proposed as a plausible integrative 

framework for the neuroscience of intelligence. 
Contemporary network neuroscience research con-
ceives of the brain as an active and dynamic infer-
ence generator, anticipating incoming sensory 
inputs and forming hypotheses about the world 
that can be tested against incoming sensory signals 
(Clark, 2013; Friston, 2010). Predictive Processing 
builds on this perspective by integrating it with 
neuroscience evidence for the importance of the 
frontoparietal (Jung and Haier, 2007) and Multiple 
Demand (Duncan, 2010) networks, by proposing a 
hierarchy (Huang and Rao, 2011) of predictive 
(Bubic et al., 2010; Ficco et al., 2021) representa-
tions in the brain, such that intelligence is the abil-
ity to overcome the uncertainty that emerges when 
predictions and incoming signals are mismatched. 
This prediction-based perspective aligns with evi-
dence that a hierarchy of overlapping brain net-
works reflecting the structure of g (Betzel and 
Bassett, 2017; Román et  al., 2014; Soreq et  al., 
2021), and aligns also to accounts for g based on 
network dynamics (Barbey, 2018; van der Maas 
et al., 2006). However, Predictive Processing goes 
further than these accounts by proposing that a 
single physiological principle (suppressing predic-
tion errors) underlies all neurocognitive activity 
and ability. While neural mechanisms for top-
down prediction error have been identified (Mayer 
et al., 2015), evidence from network topology for 
the role of prediction in guiding network dynamics 
is lacking. Though Predictive Processing proposes 
uncertainty to be the central mechanism for intel-
ligence, present formulations (Euler, 2018) of the 
model associate g with a single primary brain net-
work, potentially at odds with current cognitive 
neuroscience theories which argue for the impor-
tance of multi-network dynamics or global activity 
and topology (Barbey, 2018; Kievit et  al., 2016; 
Kovacs and Conway, 2016; Soreq et al., 2021).

Watershed model of fluId 
IntellIgence

The Watershed Model of fluid intelligence (Kievit 
et al., 2016) draws primarily on neuroscience evi-
dence for the role of microstructural white matter 
integrity (Lebel and Deoni, 2018; Roberts et  al., 
2013; Sampaio-Baptista and Johansen-Berg, 
2017) in cognitive ability and development. The 
Watershed Model proposes that a hierarchical 
structure unifies the directed relationship between 
white matter integrity and general intelligence 
(Penke et al., 2012), where white matter integrity 
predicts processing speed (Penke et al., 2010), and 
processing speed predicts intelligence (Schubert 
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et  al., 2015, 2017). As a conceptual framework, 
the Watershed Model affords for hierarchical rela-
tionships between lower-level sources of individ-
ual variance (e.g., genotypes) that gradually 
accumulate to influence individual differences in 
intermediate variables (e.g., white matter micro-
structure, processing speed), that ultimately pro-
duce large individual differences in the phenotypic 
outcome of the model (e.g., fluid intelligence). 
Kievit et al., 2016 validate their Watershed Model 
using cross-sectional data, measuring white matter 
integrity via tract-specific Fractional Anisotropy 
values acquired using Diffusion Tensor Imaging 
(Fox et al., 2012). Though Kievit et al. (2016) did 
not present their theory as a cognitive neurosci-
ence account, the relationship between structural 
brain network topology (Hagmann et  al., 2007), 
underlying white matter integrity (Frey et  al., 
2021), and cognition (Na et al., 2018; Zhai et al., 
2020) has lead both Parieto-Frontal Integration 
(Jung and Haier, 2007) and Network Neurosience 
Theory (Barbey, 2018) to make explicit claims 
about the importance of underling white matter 
structure to cognitive ability, which are broadly 
supported by in a wealth of neuroimaging evi-
dence (Barbey et al., 2013b, 2014, 2015; Basten 
et  al., 2015; Byrge et  al., 2014; Gläscher et  al., 
2010; Hilger et al., 2017; Na et al., 2018; Park and 
Friston, 2013; Pineda-Pardo et al., 2016; Román 
et  al., 2017). Watershed models may be easily 
extended to include measures of network structure 
and topology, as the conceptual strengths of the 
framework may permit future inclusion of directed 
relationships between underlying white matter 
structure and brain network topology, affording 
investigation into the network architecture that 
underlies intelligence. As it stands, however, neu-
roscience data that directly support the Watershed 
Model of fluid intelligence are, as in other models, 
bound up with the methodologies of a single 
imaging modality and conceptual framing.

netWork neuroscIence theory  
of IntellIgence

Recent work in network neuroscience suggests 
that systemwide brain network topology (Deco 
et  al., 2015; Frey et  al., 2021; Na et  al., 2018; 
Sporns et al., 2000b), and dynamics (Barbey et al., 
2015; Cabral et al., 2017; Chai et al., 2017; Shine 
et  al., 2016; Sporns et  al., 2000a) are critical 
sources of individual differences in cognitive abil-
ity. Aligning with this perspective, the Network 
Neuroscience Theory of intelligence (Barbey, 
2018) proposes that intelligence results primarily 

from the flexible and dynamic reconfiguration of 
brain networks. The theory argues that network 
properties supporting intelligence are not isolated 
to specific brain networks identified by localist 
neuroscience theories of intelligence; instead, 
they are distributed across the entire connectome 
and reflected in functional edges that support both 
integration and segregation, enabling efficient and 
flexible dynamics across the entire connectome. 
This multi-network description of the underpin-
ning of intelligence differs fundamentally from 
more localist theories, instead proposing that 
intelligence is produced by whole-brain, multi-
network connectivity and dynamics, supported by 
an efficient and modular underlying architecture.

Network Neuroscience Theory adopts the per-
spective that g originates from individual differ-
ences in the network topology and dynamics of 
the entire connectome. The theory emphasizes 
the mechanistic importance of small-world brain 
networks (Bassett and Bullmore, 2006, 2017) in 
producing the functional dynamics (Zalesky et al., 
2014) and resulting connectivity displayed dur-
ing cognition (Nee, 2021), where the organization 
of functional brain networks, and their network 
reconfigurations, are constrained and supported 
by underlying white-matter structural connectiv-
ity of intrinsic brain networks (Gu et  al., 2015; 
Park and Friston, 2013). Small-world topologies 
(a combination of high local clustering and effi-
cient pathways for long-distance communication) 
optimally facilitate the structural connectivity 
and functional integration of distant brain areas 
(Bullmore and Sporns, 2012; Gallos et al., 2012; 
van den Heuvel et  al., 2009), affording network 
efficiency through both global functional integra-
tion (Langer et al., 2012) and flexible local con-
nectivity (Bertolero et  al., 2018; Dubois et  al., 
2018; Santarnecchi et  al., 2014). The resulting 
topological balance of integrated and segre-
gated edges (Cohen and D’Esposito, 2016; van 
Vreeswijk and Sompolinsky, 1996; Wang et  al., 
2021) produces critical network dynamics that 
balance the connectome in a maximally connected 
and flexible state (Beggs, 2008; Fekete et  al., 
2021; Vázquez-Rodríguez et al., 2017), facilitating 
the dynamic brain network reconfigurations that 
give rise to both efficient and specialized informa-
tion processing (Bassett et al., 2011; Braun et al., 
2015; Finc et al., 2020; Shine et al., 2016).

One important respect in which this view dif-
fers from other cognitive neuroscience theories, 
such as Process Overlap (Kovacs and Conway, 
2016) or Network Sampling (Soreq et al., 2021), is 
by emphasizing the constraints that brain network 
architecture places on flexibly reconfiguring brain 
networks during task-based cognition (Barbey 
et al., 2013a; Bolt et al., 2017; Cole et al., 2014; 
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Dehaene et al., 1998; Gu et al., 2015; Kitzbichler 
et  al., 2011) and across development (Byrge 
et al., 2014; Na et al., 2018; Oldham and Fornito, 
2019; Zuo et  al., 2017). In particular, Network 
Neuroscience predicts the importance of both seg-
regation and integration across brain networks for 
facilitating intelligence via small-world organi-
zation, whereas Process Overlap predicts that 
intelligence depends only on functional network 
integration. Small-world networks enable a bal-
ance between specialized, locally connected infor-
mation processing and global connectome-wide 
communication (Gallos et  al., 2012; Watts and 
Strogatz, 1998), resulting in modular autonomy 
between neural systems (Barbey, 2018; Barbey 
et  al., 2015; Meunier et  al., 2010) and efficient 
network integration (Achard and Bullmore, 2007; 
Avena-Koenigsberger et  al., 2019; Khambhati 
et  al., 2018) that reflects the modular and inte-
grated hierarchy of cognitive abilities (Román 
et al., 2014; van den Heuvel et al., 2009).

Network Neurosience Theory therefore argues 
that brain network modularity and segregation 
(Bertolero et  al., 2015, 2018; Gallos et  al., 2012) 
support both global and local integration and con-
nectivity (Langer et  al., 2012; Santarnecchi et  al., 
2017b; van den Heuvel et  al., 2009), resulting in 
a small-world network architecture (Bassett and 
Bullmore, 2017) and topological balance (Wang 
et  al., 2021) of connections that affords network 
reconfigurations from a critically balanced state 
(Beggs, 2008; Fekete et  al., 2021; Vázquez-
Rodríguez et  al., 2017) to either topologically 
similar, or to topologically distant network states 
(Gu et  al., 2015), in the service of task demands. 
This importantly allows the Network Neuroscience 
Theory to propose that g emerges from the informa-
tion processing abilities of the brain, and that individ-
ual differences in two broad abilities—crystallized 
intelligence and fluid intelligence—are respectively 
facilitated by transitions to easy-to-reach network 
states (supported by strongly connected hub nodes) 
and difficult-to-reach network states (supported by 
diffuse, weak functional connections). In this way, 
the theory contacts cognitive theories of intelligence 
at multiple levels of their factor structure (both gen-
eral and broad), representing an advance beyond 
other theories that focus on single modalities of 
neuroscience data, or single levels in the hierarchy 
of cognitive abilities. Further, this network dynam-
ics perspective permits Network Neuroscience 
Theory to explain observations about the “positive 
manifold”, such as the observed factor structure of g 
(Schneider and McGrew, 2012, 2018) and factor dif-
ferentiation (Detterman and Daniel, 1989), in terms 
of brain network dynamics, and to further explain 
individual differences in those network transitions 
in terms of the underlying architecture and topology 

of brain networks that support flexibility, modular 
structure and small-world organization. Though 
much evidence for the Network Neuroscience the-
ory remains indirect, it suggests intriguing potential 
as an explanation for intelligence, and more gener-
ally for the modular and parallelized organization 
of cognitive abilities (Barbey, 2018; Barbey et al., 
2015; Robinson et al., 2009). Recent research has 
begun to compare global functional connectivity 
patterns predicted by Network Neuroscience Theory 
against localist cognitive neuroscience connectivity 
patterns as precictors of general intelligence, find-
ing whole-brain connectivity patterns to be most 
predictive of individual differences in g (Anderson 
and Barbey, 2022). Network Neuroscience research 
of this sort may therefore represents a promising 
path forward towards elucidating the neurobiologi-
cal underpinnings of the g factor, motivating future 
studies into the precise mechanistic role of human 
brain network organization (Mill et al., 2017) and 
brain network dynamics (Girn et al., 2019) underly-
ing broad and general facets of intelligence.

oPen QuestIons remaIn for 
cognItIve neurosIence

What, indeed, are the neurobiological foundations 
of individual differences in g? Several primary 
questions remain to motivate future research and 
theory development.

1. to what extent can current methods in network 
neuroscience be used to successfully reconcile 
sometimes overlapping claims made by current 
cognitive neuroscience theories, and more precisely 
elucidate the neurobiological foundations of g?

2. Does the assumption that g originates from a 
primary brain region or network remain tenable, or 
should theories instead broaden their explanatory 
scope to incorporate evidence for individual differ-
ences in the global topology and dynamics of the 
human brain?

3. to what extent can individual differences in 
broad and general facets of intelligence be 
accounted for by brain network dynamics? Do top-
down mechanisms for cognitive control figure 
prominently in facilitating these network reconfig-
urations, or do network dynamics depend instead 
on more emergent processes, potentially facili-
tated by prediction and error?

Evidently, a formally precise and unifying the-
ory of the cognitive neuroscience of the g factor 
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remains a challenge to formulate, due in part to 
the spatially and temporally overlapping nature 
of existing theories, and the indirect nature of 
the relevant cognitive neuroscience evidence. 
Neuroscience research demonstrates that the 
human brain is a complex network, structured to 
provide both widespread global integration and 
specialized regional connectivity that support gen-
eral and specific cognitive abilities. The develop-
ment and maintenance of cognitive abilities appear 
to emerge from the remarkably dynamic nature of 
the brain (both the slower adaptation of structural 
connections during learning, and the faster func-
tional reconfiguration of brain networks while 
performing functional tasks). At many levels of 
resolution, psychometric (van der Maas et  al., 
2006), developmental (Savi et al., 2019), cellular 
(Geary, 2019), neural (Neubauer and Fink, 2009; 
Schubert et  al., 2017), regional (Duncan et  al., 
2000), network (Barbey, 2018; Duncan, 2010; 
Jung and Haier, 2007; Kovacs and Conway, 2016), 
phenotypic (Kievit et al., 2016), and global (Euler, 
2018) theories of intelligence draw either directly 
or indirectly from research into cognitive neuro-
science, enabling overlapping predictions between 
the organization of the brain, and the structure of 
cognitive abilities.

While current cognitive neuroscience theories 
of intelligence each propose to explain individual 
differences in g on the basis of neurobiological 
evidence, these theories each originate at differ-
ent levels of analytic resolution, are often built on 
the basis of different modalities of research evi-
dence. Looking across the theories we have sur-
veyed, two central themes emerge: the importance 
of specialized regions and connections that sup-
port flexible brain network reconfiguration, and 
the importance of global brain network topology 
and organization. Reconciling these regional and 
global levels of resolution can be difficult, in part 
due to the indirect nature of relationships between 
g and cognitive neuroscience evidence.

challenges and future dIrectIons

A key area for future research and theory develop-
ment is the incorporation of fine-grained mecha-
nisms for network reconfiguration (Avena- 
Koenigsberger et al., 2019; Khambhati et al., 2018) 
into accounts of the emergence of g from large-
scale brain networks (Bressler and Menon, 2010; 
Varoquaux et  al., 2018). Current research in sys-
tems neuroscience suggests an explanation for g in 
which global principles of network topology organ-
ize connectivity into a modular and hierarchical 

structure, and that same modular structure (and the 
local topology it affords) further tunes and refine 
those global properties. This modular and dynamic 
hierarchy produces the adaptive and massively 
parallel nature of human cognition, facilitating 
topological reconfigurations of brain networks 
during cognition (Cole et  al., 2014) that depend 
critically on modifying the allegiance of hub nodes 
and network modules (Bolt et al., 2017). While the 
critical role of modules for organizing and main-
taining brain network topology may be a general 
organizational principle across the connectome 
(Bertolero et al., 2018), the particular hub regions 
and modules that facilitate brain network recon-
figurations display flexible membership with fron-
toparietal and multiple demand network (Camilleri 
et al., 2018; Cole et al., 2012; Power and Petersen, 
2013), and appear to play an important role coordi-
nating network state transitions related to task-
based cognitive performance (Cole et  al., 2013; 
Duncan and Owen, 2000) and general intelligence 
in particular (Barbey et  al., 2013a; Hilger et  al., 
2017). Adjustments to both long-range structural 
connectivity (Byrge et al., 2014; Gu et al., 2015), 
and intrinsic functional network representations 
(Yeo et  al., 2011; Yeo et  al., 2014), produce and 
maintain a connectome that can sit in a balanced, 
critical states (Beggs, 2008; Bullmore and Sporns, 
2012; Fekete et  al., 2021; Sporns et  al., 2004). 
Mismatches between external task demands and 
internal representations (Bubic et al., 2010; Ficco 
et al., 2021; Huang and Rao, 2011) appear to per-
turb this connectome, facilitating network recon-
figurations through a pattern of excitatory and 
inhibitory functional signaling (Cole et al., 2012), 
leading to the top-down and bottom-up recruitment 
of a hierarchy of task-relevant functional modules 
(Bolt et al., 2017; Soreq et al., 2021).

A key challenge going forward is to develop 
theories that can account for these various reso-
lutions of network mechanism while generating 
testable predictions. These network mechanisms 
involved in g will support the specialization and 
local efficiency of many segregated network 
communities, while simultaneously afford-
ing long-range integration and global efficiency 
between networks. A primary strength of Network 
Sampling and the Network Neuroscience Theory 
of general intelligence is that each can offer a par-
simonious mapping of those neurobiological prop-
erties to cognitive abilities, such that segregated 
local communities and global network integration 
respectively underlie specific cognitive capacities 
and the recruitment of those operations to adap-
tively facilitate cognitive performance. These 
hierarchies of brain networks, either spatially 
hierarchical (as in processing overlap) or dynami-
cally hierarchical (as in network neuroscience), 
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may in fact mirror the factor structure of cognitive 
abilities, in which narrow cognitive abilities (e.g., 
induction, lexical knowledge) can be grouped into 
broad abilities (e.g., fluid intelligence, crystallized 
intelligence) that collectively reflect overall indi-
vidual differences in intelligence (i.e., the “positive 
manifold”).

lImItatIons of current theorIes

Two primary limitations currently beset cognitive 
neuroscience theories of general intelligence. A 
first weakness of cognitive neuroscience theories 
is the somewhat indirect nature of the evidence 
they assemble. Much neuroimaging evidence 
emerges from of an investigation into a particular 
modality of neuroscience data (structural, func-
tional, metabolic) using a particular analytic tech-
nique. Further, only a subset of empirical evidence 
is focused particularly on the neurobiology of the 
“positive manifold”. Network neuroscience evi-
dence shows a clear relationship between underly-
ing brain networks and individual differences in 
cognitive ability. However, many of these network 
properties are studied at a single level of resolu-
tion in isolation, as opposed to investigated jointly, 
or with respect to general intelligence explicitly. 
This lack of mechanistic and explanatory exclu-
sivity compounds the indirect nature of network 
neuroscience evidence. Consider the well-known 
relationship between intelligence and gray matter 
volume (Cole et al., 2012). How often do studies 
include and control for this relationship when 
investigating the contributions of other neurobio-
logical properties to intelligence? Is it ever appro-
priate to perform this control? Similarly, little 
work has been done to establish specificity in 
neuroimaging theories by distinguishing experi-
mentally between existing cognitive neuroscience 
theories of general intelligence, or by attempting 
to replicate the corpus of results on which they 
base their evidential support using current data 
and methods (Kruschwitz et al., 2018).

This leads to a second limitation of current theo-
ries: network neuroscience research makes limited 
interdisciplinary contact with psychology theories 
on the structure of intelligence and the “positive 
manifold”. While factor accounts of g and “posi-
tive manifold” remain predominant (Schneider 
and McGrew, 2012, 2018), growing reinterest in 
network models of intelligence has led to the re-
emergence of the sampling theorem by Thomson, 
and newfound interest in network models (Savi 
et al., 2019; van Der Maas et al., 2017) for explain-
ing the structure and development of cognitive 

abilities. While Processing Overlap (Kovacs and 
Conway, 2016) and Network Sampling (Soreq 
et al., 2021) take a sampling theorem perspective, 
their neuroimaging evidence is again primarily 
indirect, and does not provide a test of the predic-
tions made by sampling theorem against the differ-
ent predictions made by other formal explanations 
of g. Even the use of sampling theorem is novel, as 
most network neuroscience theories adopt a factor 
analytic perspective to g. To the extent that neuro-
science theories parse the neurobiology of broad 
facets of intelligence, their focus is predominantly 
on the distinction between fluid and crystallized 
intelligence. The CHC account of the “positive 
manifold” and the factor structure of g identifies 
up to 14 broad intelligence factors beyond Gf and 
Gc that load onto g, identifying, for example, fac-
ets as various as short-term memory (Gsm), pro-
cessing speed (Gs), auditory processing (Ga), and 
domain-specific knowledge (Gkn). Of these broad 
facets, Neural Speed (Schubert et  al., 2017) and 
the Watershed Model (Kievit et al., 2016) remain 
the only neuroscience theories that address indi-
vidual differences in broad ability beyond Gf and 
Gc—namely, processing speed—and not ways 
consistent with the well-supported factor structure 
of intelligence identified by CHC theory. Beyond 
factor and sampling theories on the “positive 
manifold”, more recent cognitive neuroscience 
theories of intelligence remain unexplored in neu-
roscience data. At present, little attention has been 
paid by neuroscience to theoretical predictions on 
the structure of intelligence, with a particular lack 
of within-subjects’ data from developmental and 
longitudinal studies. Building a more robust net-
work neuroscience of intelligence may ultimately 
require a more precise mapping between brain 
networks and cognitive abilities, reflecting the 
nuanced hierarchical relationships between cogni-
tive operations and neurobiological substrates that 
facilitate the “positive manifold”.

To what extent can or should cognitive neuro-
science theories of intelligence further integrate 
with findings on individual differences in the 
“positive manifold” from non-neuroscience fields? 
g is fundamentally a measure of individual differ-
ences, and fully characterizing the neurobiology 
that underlies individual differences in cognitive 
ability remains an open problem for the field. In 
particular, understanding the remarkable breadth 
of variation in human intellectual abilities will 
require accounting for intellectual performance 
at very high ends of the human population’s dis-
tribution, either in terms of a more fundamental 
characterization of the nature of brain network 
dynamics, or a more fundamental reassessment 
of individual differences in the mapping between 
network topology and cognitive performance. 
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Further, it remains an open question how gener-
ally to map levels of the hierarchy of intellectual 
abilities (general, broad, and narrow) onto levels 
of resolution in brain networks. What role might 
higher-order representations of network structure 
and dynamics—possibly beyond those currently 
assessed in connectomics—play in facilitating the 
dynamics of reconfiguration? What unifying theo-
ries and modeling approaches could be applied 
to develop a more integrated and comprehensive 
understanding of the brain network dynamics, 
betterer accounting for the network relationships 
between intelligence, neurobiological structures, 
and the information-processing capabilities they 
support (Savi et al., 2021)?

summary and conclusIons

In summary, a full and comprehensive understand-
ing of human intelligence may require character-
izing the developmental time course of cognition 
over the lifespan with respect to properties of brain 
networks and their topology. Cognitive abilities 
develop and decline at differing rates through the 
lifespan. How do these changes map onto the 
structure of the brain, and in what respects are they 
sensitive to genetic and environmental factors? As 
the scope of these issues suggest, fundamental 
questions about the nature and mechanisms of 
human intelligence remain. Cognitive neurosci-
ence theories of intelligence will hopefully con-
tinue to provide a catalyst for contemporary 
network neuroscience research in this area, moti-
vating important future work into neurobiological 
underpinnings of individual differences. Several 
key questions remain, promising to enhance our 
understanding of the fundamental nature of human 
intelligence and individual differences. Through 
further investigating the neurobiological founda-
tions of general intelligence, network neurosci-
ence will continue to make advances in our 
understanding of the remarkable breadth and vari-
ation of human abilities.

Network neuroscience research into intelli-
gence has emphasized two primary neurobiologi-
cal mechanisms that underlie cognitive ability: 
the flexible, dynamic integration of multiple brain 
networks during information processing, and the 
topology and connectivity of densely connected 
hub nodes that drive or coordinate network recon-
figuration. Several cognitive neuroscience theo-
ries of intelligence appeal to these properties when 
drawing on neuroscience evidence to explain 
individual differences in cognitive ability. In this 
chapter, we have presented cognitive neuroscience 

hypotheses and theories of human intelligence, 
including neural speed and network efficiency 
hypotheses, the Parieto-Frontal Integration Theory 
and Multiple Demand Theory, Process Overlap 
Theory and Network Sampling Theory, predictive 
processing models, the Watershed Model, and the 
Network Neuroscience Theory. While these theo-
ries each draw on a well-established body of neuro-
science evidence, they are also tied to the research 
methods and techniques that gave rise to them, 
complicating efforts to compare their claims and 
predictions. In reviewing the empirical evidence 
for current neuroscience theories, we have dis-
cussed the methodological challenges of studying 
general intelligence with neuroscience data, have 
identified the particularly promising strengths of 
network sampling- and topology-based theories of 
intelligence, and, finally, have raised several key 
questions to be addressed for future research into 
intelligence and cognitive ability.
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